

Hematopathology Course

- Lecturer: Dr. Tariq Al-Adaily
- Email: TNALADILY@ju.edu.jo
- Office: JUH- outpatient building
- 3rd floor, Hematology Lab
- Office hours: Thursday 12-1
- Reference: Robbins Basic Pathology 9th ed

RBC DISORDERS

Anemia

Definition

- Reduction of total RBC MASS below normal amount
- Reduction of oxygen carrying capacity of the blood
- Leads to tissue hypoxia
- Practically, measure by Hemoglobin concentration (g/dL), and Hematocrit (ratio of packed RBCs to total blood volume)

Classification according to cause

Increased destruction (hemolytic anemia)

Extrinsic factors (infection, antibody, mechanical)

Intrinsic RBC abnormalities:

- 1) Hereditary (membrane, enzyme, Hg abnormalities)
- 2) Acquired (Paroxysmal nocturnal hematuria)

Diminished Erythropoiesis

- Iron deficiency anemia
- Megaloblastic anemia
- Aplastic anemia
- Pure red cell aplasia
- Myelophthisic anemia
- Myelodysplastic syndrome

Blood loss

Classification according to morphology

1) Hypochromic microcytic anemia

Iron deficiency, thalassemia, anemia of chronic disease, sideroblastic anemia

2) Normochromic normocytic anemia

Anemia of chronic disease, some hemolytic anemias

3) Macrocytic anemia

Megaloblastic anemia, myelodysplastic syndrome, hypothyroidism

- Shape: anisopoikelocytosis, measured by RBCs distribution width (RDW)
- Hypochromic microcytic anemia usually reflects impaired Hg synthesis
- Macrocytic anemia reflects stem cell disease and maturation

-	C C
	Decker and
1	DESV
Ę,	REGISTERED

A-LAB 0004

Lab. Request Form

مستشفح الجامصة الأردنية Jordan University Hospital

Surname :				Lab. Ref. No. :			Nature of Specimen / s Date Hr Dr. Sig				
Code No.		Result			Τ		Result	Γ			
	103005		WBC $\times 12^{12}/L$		4.0 - 10	102012		Flootrophonois		6	
	103004		RBC × 10%L		M 5.5 ± 1.0 F 4.8 ± 1.0	103012		b. Electrophoresis			
						103008	AL	Neut - Band %	0	0	- N
	103003		Hemoglobin g/dl		$ \begin{array}{r} M & 16 \pm 2 \\ F & 14 \pm 2 \\ \hline M & 0.46 \pm 0.05 \end{array} $		DIFFERENTIAL	Neut - Sig. %		40 - 75	-
								Eosinophil %		1 - 6	
U	103003	a	нст				EF	Basophil %		0 - 1	>-
CB		u			F 0.42 ± 0.05			Lymphocyte %		20 - 45	O
		Q	MCV fl		80 - 100			Monocyte %	- 20	2 - 10	0
			MCH pg / cell		26 - 34			Wonocyte 70		2-10	-10
			MCHC g / dl		31 - 36	LAB COMM	ENTS				
103006			140 - 440						O		
103011 🗆 ESR mm / hr			M 0 - 15 F 0 - 20								
103010 🗆 Retic. Con		tic. Count		0.005 - 0.015						1000	
103009		□ Eosin. Count t × 10 ⁹ /L			0.05 - 0.45						a lagrant second
103020 🗆 :		D Sic	ckle Cell		Nil					4.2	
103007		Blood Film		·							
103025		Malaria Smear		+							
103031 🗆 РТ								-	-		
103032 🗆 PTT						-					
103033 🗆 EGT		GT			Date Reported	11	Reported By	<u>97</u>	14		

Clinical features of anemia

- Dizziness
- Fatigue
- Pallor
- Headache
- Hypotension
- Tachycardia
- Tachypnea
- Hemolytic anemia: jaundice, splenomegaly, bone and joint pain, growth retardation

Anemia of acute blood loss

- RBCs are rapidly lost outside circulatory system
- Body responds by shifting fluid from interstitial to intravascular space, anemia worsens by dilution
- Symptoms are related to decreased intravascular volume, might cause cardiovascular shock and death
- Erythropoietin secretion is stimulated, activating BM erythropoiesis
- Mature RBCs as well as Reticulocytes appear in blood after 5 days
- Anemia is normochromic normocytic, with reticulocytosis
- Leukocytosis (secondary to stress)

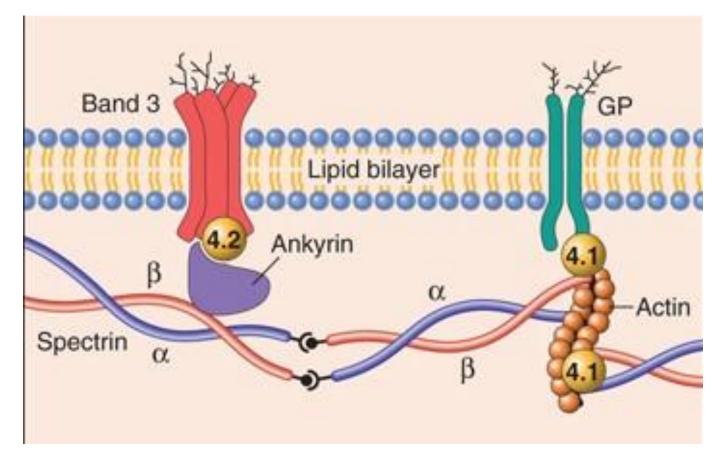
Anemia of chronic blood loss

- Frequent loss of RBCs
- Occurs when the rate of RBC loss exceeds regeneration
- Iron is lost with RBCs
- Anemia is normochromic normocytic, or hypochromic microcytic

Hemolytic Anemia

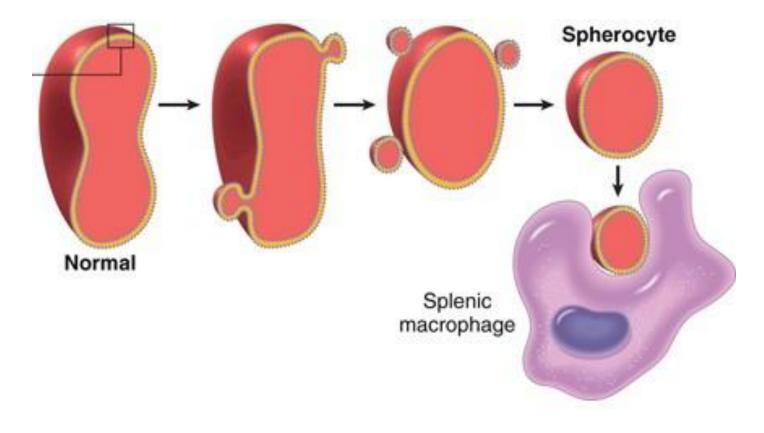
- Normally, RBCs age is around 120 days, aged RBCs are engulfed by macrophages in spleen, liver and BM
- Abnormal and premature destruction of RBCs
- Accumulation of Hg degradation products
- Retention of iron
- High erythropoietin, LDH, Retic count
- Secondary increased erythropoiesis
- Extravascular hemolysis: increased phagocytic activity
- Intravascular hemolysis: occurs inside blood vessels

Extravascular Hemolysis

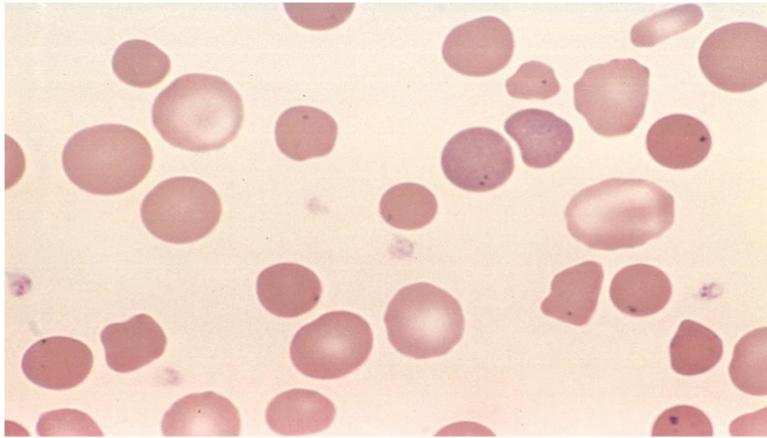

- RBC is less deformable or having abnormal shape
- Abnormal RBC movement in splenic sinusoids
- Attracts histiocytes to engulf abnormal RBCs
- Hg is converted to bilirubin in histiocytes
- Free Hg in serum binds Haptoglobin
- The triad of extravascular HA is: Anemia, splenomegaly and jaundice

Intravascular Hemolysis

- Less common, more severe symptoms
- Caused by mechanical damage, complement fixation, microorganism, exogenous toxins
- Due to large amount of free Hg, haptoglobin is cleared from the serum
- free Hg in serum is oxidized to Methemoglobin, hypoxia
- Excess free Hg and met-Hg are excreted in urine (hemoglobinuria) causing dark urine
- Renal hemosiderosis may occur


1)Hereditary spherocytosis

Etiology: frameshift mutation


Hereditary spherocytosis

- Mode of inheritance
- Prevalence
 * Pathogenesis

Pathologic findings

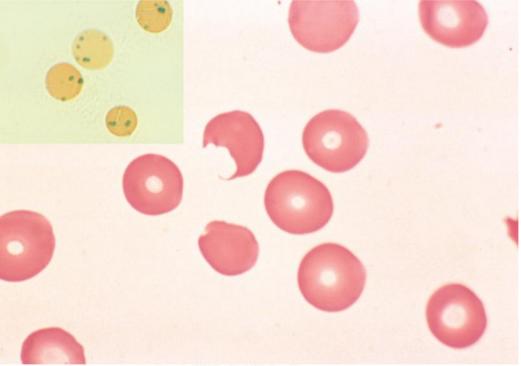
• Blood film

Kumar et al: Robbins Basic Pathology, 9e. Copyright © 2013 by Saunders, an imprint of Elsevier Inc.

Pathologic findings

- MCHC
- Retic
- Osmotic fragility
- Family Hx
- Clinical course, signs and symptoms

2) Glucose-6-Phosphate **Dehydrogenase Deficiency**


- Glucose-6-phosphate 6-Phosphogluconate G6PD NADPH NADP Glutathione reductase GSH GSSG Glutathione peroxidase H₂O HoC
- Etiology
- Mode of inheritance
- Prevalence
- Enzymatic pathway
- Pathologic enzyme

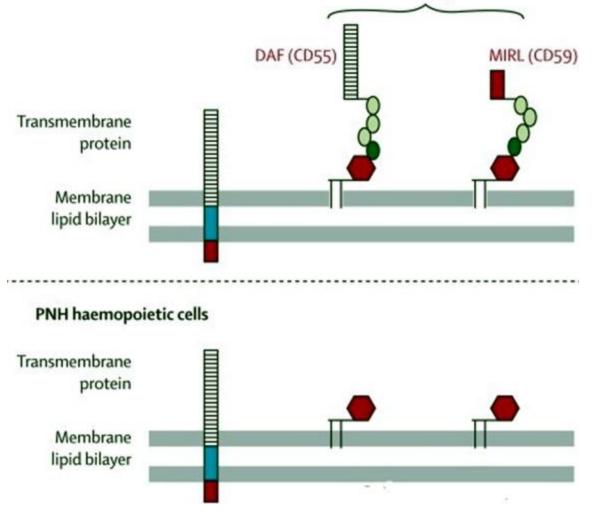
Pathogenesis

- Site of enzyme
- RBC life
- Degree of deficiency
- Heinz bodies (crystal violet,

Supravital stain)

- Bite cells
- Hemolysis (old RBCs)

Kumar et al: Robbins Basic Pathology, 9e. Copyright © 2013 $\,$ by Saunders, an imprint of Elsevier Inc.

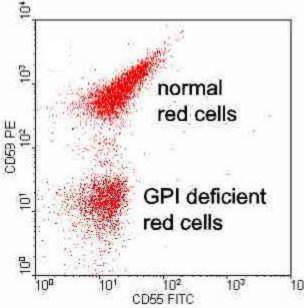

Crisis

- **Drugs** (sulfonamides, malaria, vitamin K, large dose aspirin)
- Infections
- Fava beans
- Clinical course (time wise, severity, signs)
- Enzymatic assay (time wise, NADPH)

3) Paroxysmal Nocturnal Hematuria

Normal haemopoietic cells

 Etiology: mutation phosphatidylinos itol glycan complementatio n group A gene (PIG-A)



GPI-anchored proteins

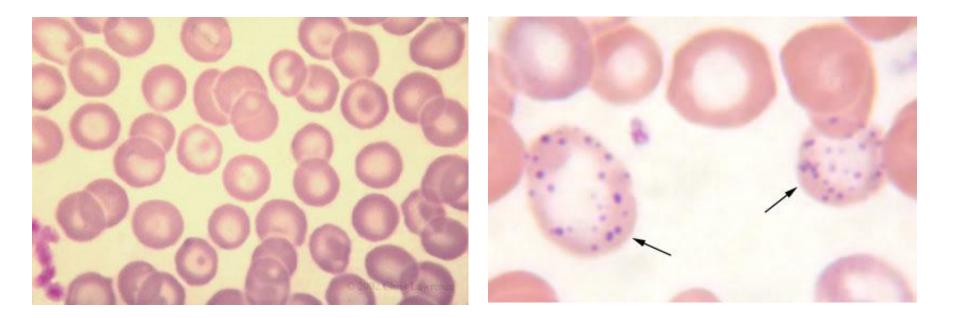
 Absent glycosylphospha tidylinositol (GPI)

Pathogenesis

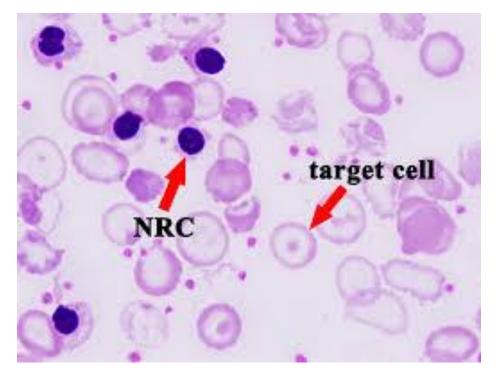
- Predominant mutant stem cell
- Deficiency in CD55, CD59
- Activation of C3-convertase (alternative pathway)
- Trilineage cell lysis
- Diagnosis: Flow cytometry

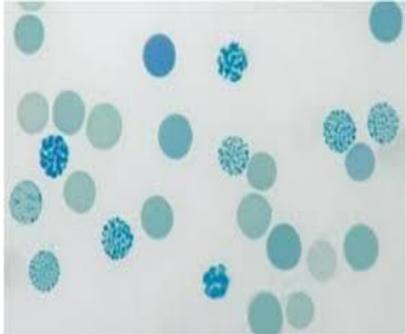
Clinical features

- Acute vs chronic hemolysis
- Thrombocytopenia
- Thrombosis
- Leukopenia
- 10% MDS, AML


4) Thalassemia

- Etiology (point mutation, deletion)
- Mode of inheritance
- Prevalence
- Types
- Beta: minor, intermedia, major
- Alpha: silent carrier, minor, intermedia, major
- Hemoglobin H Disease: deletion of 3 alpha genes, common in Asia, beta and gamma tetramer (Barts), clinically resembles β-thalassemia intermedia
- Symptoms: after 6 months


Pathogenesis

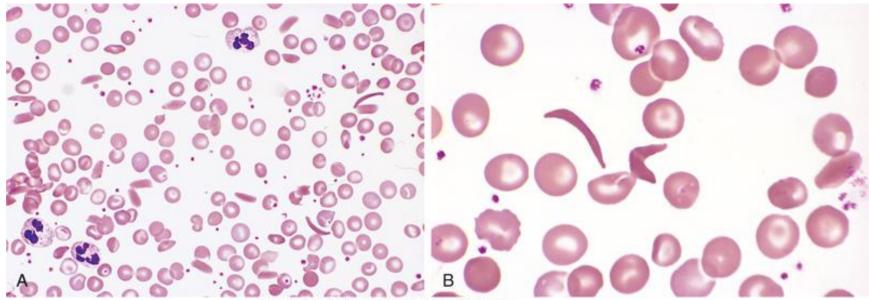

- Decreased production of hemoglobin A
- RBCs: hypochromic, microcytic (hypoxia)
- In Beta-thal: increased Hg A2, Hg F (Hg electrophoresis)
- Excess unpaired globin chains (hemichromes): membrane damage, intra and extravascular hemolysis
- Intermedia + major: chronic hypoxia, persistent high erythropoietin (inhibits Hepcidin), ineffective erythropoiesis (increased normoblasts, crew cut X-ray)
- Extramedullary hematopoiesis
- Secondary hemosiderosis (low hepcidin), skin pigmentation (melanin)
- Abnormal bone growth
- Heart failure: anemia, transfusion, hemosiderosis
- Thrombosis: deformed membrane attracts platelets and injure blood vessels

Blood film

Blood film

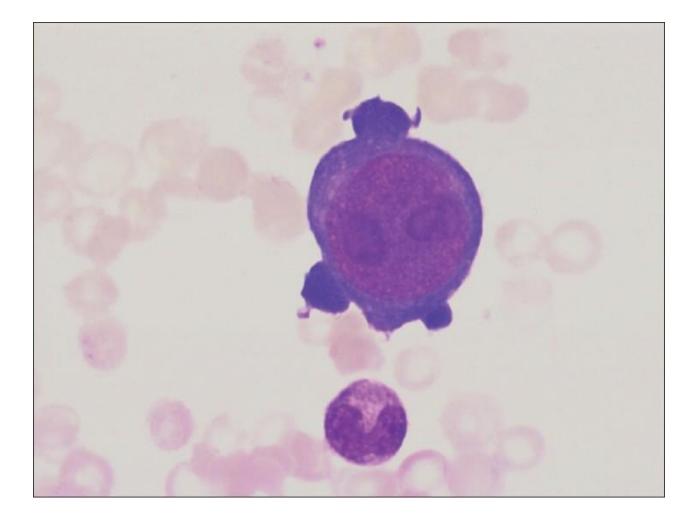
5) Sickle cell anemia

- Etiology (Glutamate Valine)
- Mode of inheritance
- Prevalence
- Sickle cell trait (heterozygous): 40% HgS
- Sickle cell anemia (homozygous): 90% HgS
- Malaria
- Symptoms: 6 months


Pathogenesis

- HgS polymerizes longitudinally, needle-like
- Hypoxia, acidosis, dehydration
- Intra + extravscular hemolysis
- Ineffective erythropoiesis
- Initial hepatosplenomegaly
- Abnormal bone growth
- Secondary hemosiderosis

Clinical crisis


- Vaso-occlusive crisis: thrombosis
- Aplastic crisis: BM ischemia, Parvovirus B19
- Sequestration crisis: massive splenomegaly, hypovolemia
- Autosplenectomy
- Acute chest syndrome
- Priapism
- Skin ulcer

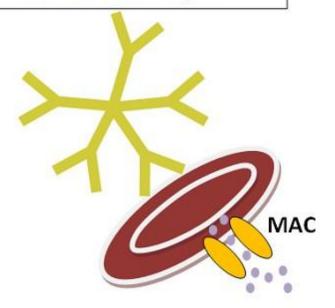
Blood film

Kumar et al: Robbins Basic Pathology, 9e. Copyright © 2013 by Saunders, an imprint of Elsevier Inc.

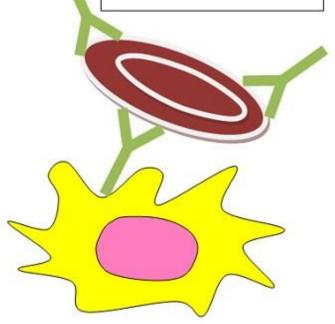
Parvovirus B19

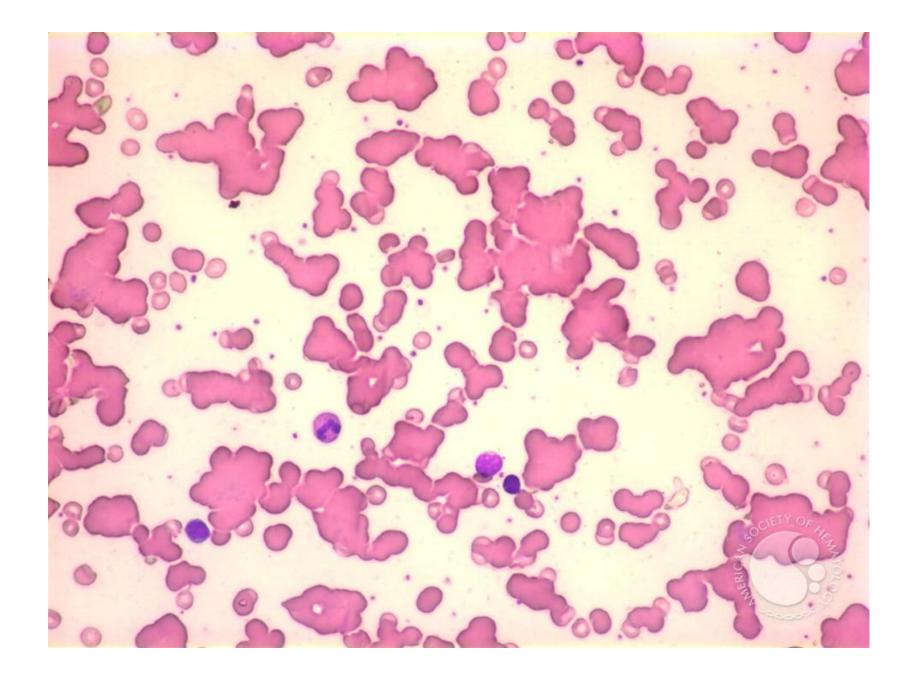
6) Autoimmune hemolytic anemia

- Etiology
- Coomb's test:
- the patient's blood is mixed with serum containing antibodies that are specific for human immunoglobulin. If the auto-antibody is present, agglutination of RBC occurs

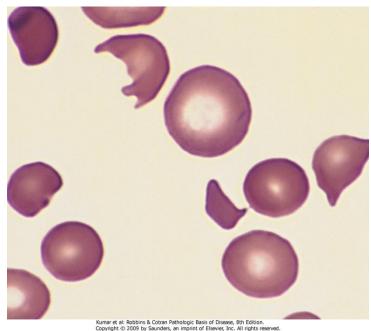

Warm Type immune HA

- IgG, IgA, core body
- 50% idiopathic
- Drugs: large IV dose (penicilline, cephalosporin, antimalaria, methyl dopa)
- 1-2 weeks
- Spherocytes
- Extravascular hemolysis


Cold type immune HA


- IgM, peripheral circulation
- Acute: post infection (mycoplasma pneumonia, influenza), self limited
- Chronic: lymphoma, severe, persistent
- Subclinical complement fixation
- Spherocytes
- RBC agglutination
- Extravscular hemolysis

Cold IgM AIHA. Hemolysis through Membrane Attack Complex.


Warm IgG AIHA being removed by Kupffer cell.

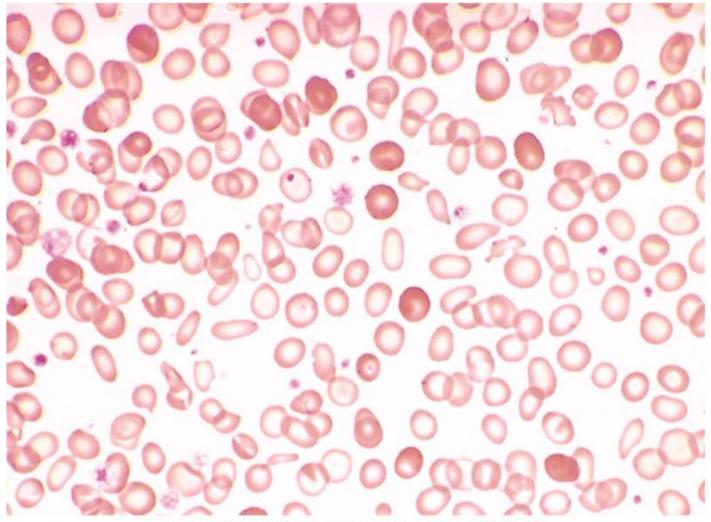
7) Trauma to RBCs

- Vigorous exercise
- Prosthetic valves
- Microangiopathic disease
- Schistocytes

8) Hypersplenism

- Special status of splenomegaly
- Pancytopenia
- Rheumatologic diseases (Felty's syndrome)
- Sickle cell anemia
- Normochromic normocytic anemia

9) Iron deficiency anemia


Causes

Nutritional, GI disease, blood loss, increased demand

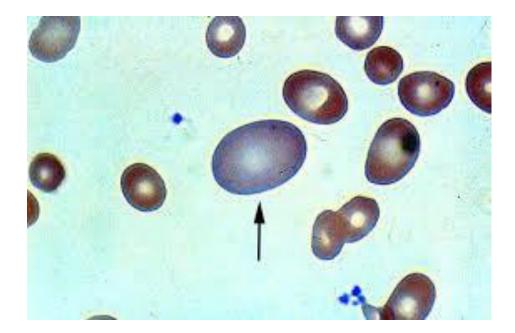
• Prevalence

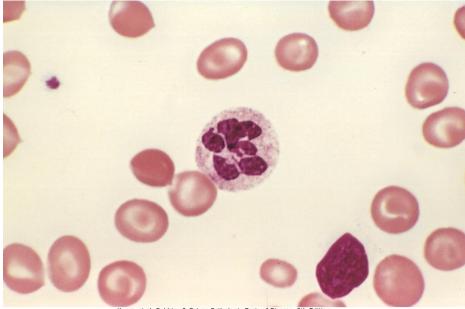
Pathogenesis

- Deficient hemoglobin synthesis (hypochromic microcytic anemia)
- Iron deficiency blocks erythropoietin effect
- Small normoblasts with shortened life
- Decreased erythropoiesis
- Low iron affects membrane stability (poikelocytosis)
- Rigid membrane: minor degree of hemolysis
- Thrombocytosis

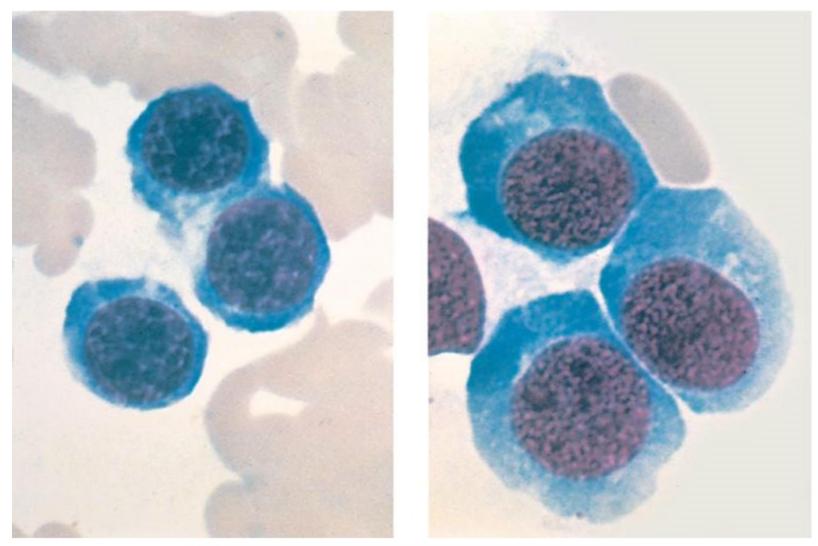
© Elsevier. Kumar et al: Robbins Basic Pathology 8e - www.studentconsult.com

Systemic features


- Entire cellular defect in proliferation
- Hair loss, abnormal nails (spoon)
- Epithelial injury (glossitis, stomatitis)
- Abnormal smooth muscle function in esophagus (web)
- Blue sclera (markedly thin)
- Neurologic and cognitive impairment in children
- Pica


10) Megaloblastic anemia

- Causes
- Vitamin B12: nutritional, pernicious anemia, GI disease
- Folate: increased demands, drugs (epilepsy, OCP, methotrexate), vitamin B12 deficiency, dialysis


Pathogenesis

- Defective thymidine, DNA synthesis
- Delayed hematopoietic cells maturation
- Large normoblasts with immature nuclei
- Macroovalocytes
- Hypersegmented neutrophils, giant meta
- Hyperlobated megakaryocytes
- Frequent apoptosis (intramedullary hemolysis)
- Defective myelin synthesis in vitamin B12

Kumar et al: Robbins & Cotran Pathologic Basis of Disease, 8th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

© Elsevier. Kumar et al: Robbins Basic Pathology 8e - www.studentconsult.com

11) Anemia of Chronic Disease

Causes

Chronic infection, cancer, rheumatologic diseases

- Prevalence
- Hospitalized patients

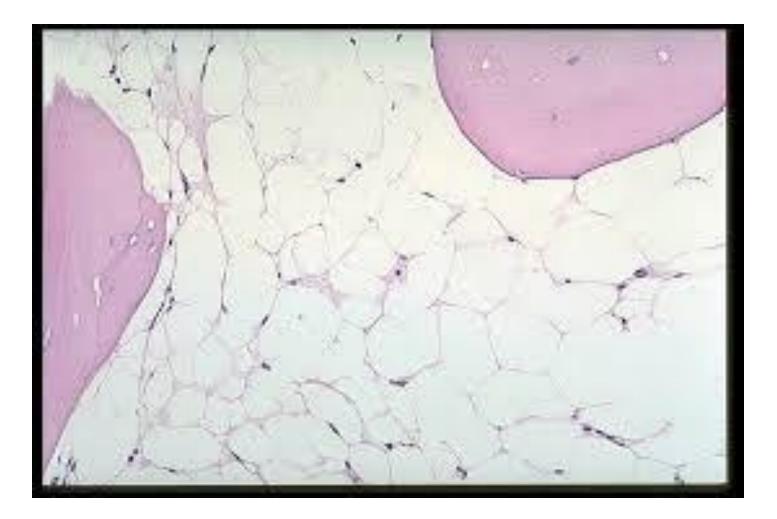
Pathogenesis

- High level of IL-6
- Activates Hepcidin
- Increased iron storage
- Blocks iron transfer from stores to erythroid cells
- Use of iron by macrophages

Morphology

- RBC are normochromic normocytic, or hypochromic microcytic
- Iron stores in BM are markedly increased
- Serum ferritin is increased
- Treatment: treat the underlying cause

12) Aplastic Anemia


• Etiology

Idiopathic, autoimmune diseases, drugs (chloramphenicol), viral hepatitis

- Prevalence
- Acquired
- Congenital: Fanconi, pure red cell aplasia

Pathogenesis and morphology

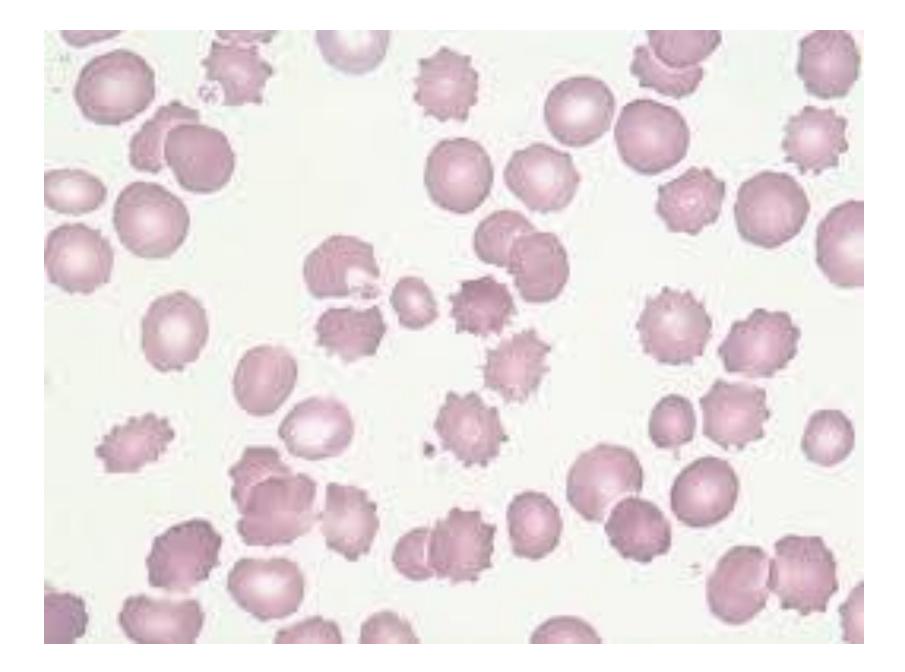
- Destruction of stem cells by aberrant T-cells
- Normochromic normocytic anemia
- Pancytopenia
- Hypocellular bone marrow, predominance of fat

13) Myelophthisic anemia

Causes

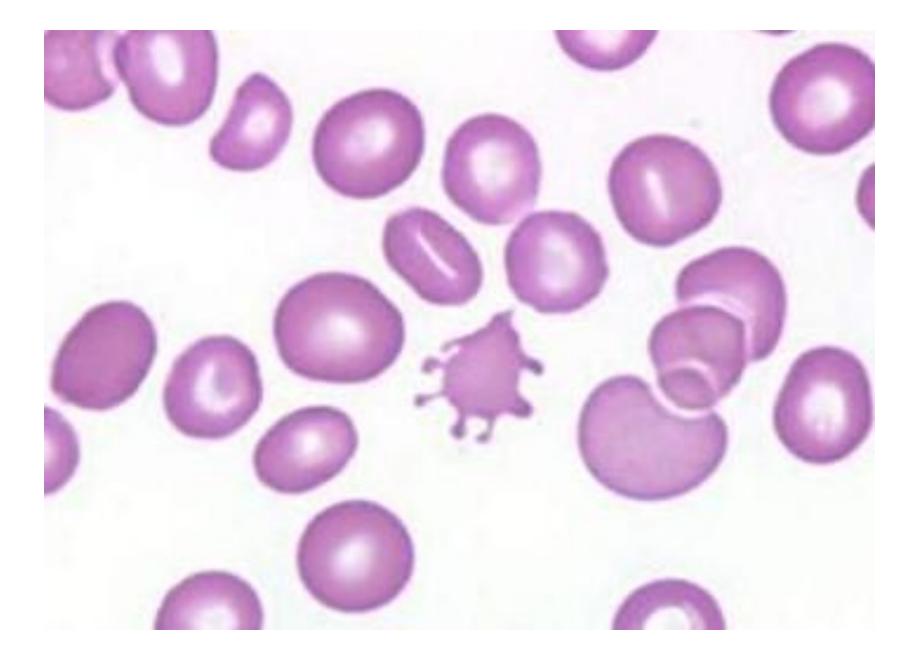
- Infiltrative disease
- Malignancy: leukemia, myeloma, metastasis
- Granulomas
- Storage disorders

Morphology


- Normochromic normocytic anemia
- pancytopenia

14) Hypothyroidism

- Slow cell growth and maturation
- Macrocytic anemia


15) Chronic renal failure

- Early disease
- Deficient erythropoietin
- Normochromic normocytic anemia
- Uremic stage
- ecchinocytes

16) Chronic liver disease

- Multifactorial anemia
- Hemorrhage
- Nutritional (vitamin B12)
- Defective lipid synthesis (acanthocytes)

17) Myelodysplastic syndrome

- Acquired mutations in stem cells
- Defective cellular maturation and egress
- Normochromic normocytic anemia, or macrocytic anemia

Polycythemia

Polycythemia

- Increased RBCs mass above normal level
- Erythrocytosis: high RBC count, seen in polycythemia and hemolytic anemia

Polycythemia vera

- Primary polycythemia
- Neoplastic disease of erythroid cells
- Low erythropoietin
- Splenomegaly
- Plethora, cyanosis, itching
- Sluggish circulation, thrombosis
- gout

Secondary polycythemia

- Chronic hypoxia
- Chronic lung disease, chronic heart disease (septal defect), alcoholism, smoking, high altitude
- Renal cell carcinoma
- Surreptitious
- Reversible
- High erythropoietin
- No splenomegaly