

Doctor: Dr. Mazen

Designed by: Majida Al-Foqara'

Hallmarks of Cancer Reprogramming Energy Metabolism

The Warburg effect

aka aerobic glycolysis

Otto Warburg

Vander Heiden et al.: Understanding the Warburg effect. Science 324:1029, 2009.

Modified Vander Heiden et al.: Understanding the Warburg effect. Science 324:1029, 2009.

Positron Emission Tomography (PET) scanning

"Glucose Hunger"

¹⁸F-fluorodeoxyglucose (non-metabolizable derivative)

Hallmarks of Cancer Evasion of the Immune System

Hallmarks of Cancer Genomic Instability

DNA damage and repair

Damaging agents

D

Mismatch repair

HNPCC

AD

DNA mismatch repair gene defects

Mutator phenotype (e.g. TGFβ type II receptors, BAX)

Microsatellite instability

Right Colon predisposition

Nucleotide Excision Repair

Xeroderma Pigmentosum

 AR

UV sensitivity (pryimidine dimer/cross-links)

Skin cancer (sun exposure)

Homologous **Recombination** Repair AR **Bloom syndrome** Ataxia-telangiectasia **Ionizing radiation** sensitivity **Fanconi** Anemia

DNA cross-linking agent sensitivity

Regulated Genomic Instability

or how do 84 genes produce ~10¹⁶ antibodies!

Variable

Diversity

Joining

Regulated Genomic Instability

or how do 84 genes produce ~10¹⁶ antibodies!

RAG 1 & 2

Regulated Genomic Instability

or how do 84 genes produce ~10¹⁶ antibodies!

Activation induced cytosine deaminase (AID)

Hallmarks of Cancer <u>Tumor-Promoting Inflammation</u>

a Acute inflammation

b Carcinogenesis

Mast cells

Angiogenesis

Fibroblasts

and fibrosis

Chicken & Egg

Persistent chronic inflammation

Barrett esophagus, ulcerative colitis, H. pylori gastritis, HBV/HCV, & chronic pancreatitis

Inflammation in response to tumors

COX-2 induction

Tissue remodelling

Growth factors

Mostly proteins from:

- Lymphocytes
- Macrophage
- Stromal cells
- Parenchymal cells

Induce cells to:

- Survive/Proliferate
- Migrate
- Differentiate

Induce proliferation through gene expression:

- Promote cell cycle entry
- Relieve cell cycle blocks
- Inhibit apoptosis
- Protein production \uparrow

Carcinogenesis is a multistep process

Carcinogenesis is a multistep process

Hallmarks Concluded!

Hanahan D, Weinberg RA: The hallmarks of cancer: the next generation. Cell 144:646, 2011.