

0 0

Slide : 17- Neoplasia

Doctor: Dr. Mazen

Hallmarks of Cancer *Growth*

Cell signalling

- 1. Growth factor binding
- 2. Transient activation of the growth factor receptor
- 3. Signal transduction
- 4. Transcription regulation
- 5. Cell cycle entry & progression

Growth factors

Typically paracrine Subverted by abnormal stromal interaction

Autocrine = +ve feedback loop

e.g. Glioblastoma - PDGF Sarcomas - TGFα

Receptors

Receptor mutations leading to constitutive activation

e.g. EGFR mutations in colon/lung cancer

Receptor over-expression

e.g. EGFR Lung SCC HER2/NEU breast

Signal transducers

<u>RAS</u>

Small G protein

Most commonly mutated proto-oncogene in human tumors

Point mutations within the GTP-binding pocket or in the enzymatic region essential for GTP hydrolysis.

D

Signal transducers

<u>ABL</u>

Non-receptor associated tyrosine kinase (TK)

Internal ABL regulatory mechanism disrupted

Constitutive TK activity

Downstream RAS pathway activation

Oncogene addiction

Imatinib (Gleevec)

Transcription factors

<u>MYC</u>

Activate/repress transcription

+CDK -CDKI

t(8;14) *MYC* in Burkitt lymphoma

Amplification in breast, colon, & lung cancers

NMYC neuroblastoma *LMYC* small cell lung cancer

Cyclins & CDKs

Quiescent cells G₀ induced to enter the cell cycle by GF & ECM integrin signalling

Cyclin+CDK=active CDK

Regulation by CDKI

Checkpoints:

- G₁-S
- G₂-M
- Metaphase

Cyclins & CDKs

Cyclin D over-expression: breast esophagus liver lymphomas plasma cell tumors *CDK4* amplification: melanomas sarcomas glioblastomas

Cyclins & CDKs

CDKN2A germline mutations: 25% of melanoma-prone kindreds

CDKN2A somatic deletion/inactivation: pancreatic carcinomas glioblastomas esophageal cancers non–small cell lung carcinomas soft tissue sarcomas bladder cancers

Hallmarks of Cancer Evading Growth Inhibition

RB : Governor of the Cell Cycle

First tumor suppressor gene to be discovered

Identified in retinoblastoma patients

Chromosome 13q14

Rare disease but mechanisms learned apply to a wide range of tumors

60% sporadic rest famillial AD

D

RB : Governor of the Cell Cycle

Knudson "two-hit" hypothesis

Two defective copies needed

Familial: -inherited -somatic mutation

Sporadic: 2 somatic mutations

D

RB : Governor of the Cell Cycle

G1-S transition

Cyclin E expression control:

- E2F sequestration
- Chromatin remodelling

Rb phosphorylation control:

- Cyclin D/CDK4,6
- Phosphatases

RB mutation mimicking

Activation of CDK4 (mutation)

Over-expression of cyclin D (translocation/ amplification)

Inactivation of CDKI (e.g. CDKN2A) *(mutation/ deletion/epigenetics)*

Oncogenic viruses (e.g. HPV E7 protein binds to Rb preventing E2F binding)

Li-Fraumeni syndrome

Tumor suppressor:

- Cell cycle arrest temporary-quiescence permanent-senescence

- Induce apoptosis

p53 senses:

- Anoxia
- Abnormal oncoprotein activity (e.g. MYC/RAS)
- DNA damage

Transcriptional targets:

- CDKN1A (p21)
- GADD45: DNA repair
- BAX: Channel
- *PUMA*: Bcl-2 antagonist
 miRNA
 - \downarrow Bcl-2

 \downarrow Cyclins

- MDM2 (after repair)

Transcriptional targets:

- CDKN1A (p21)
- GADD45: DNA repair
- BAX: Channel
- *PUMA*: Bcl-2 antagonist
 miRNA
 - - ↓ Bcl-2
 - \downarrow Cyclins
- MDM2 (after repair)

Transcriptional targets:

- CDKN1A (p21)
- GADD45: DNA repair
- BAX: Channel
- PUMA: Bcl-2 antagonist
- miRNA

 $\downarrow \text{Bcl-2}$

 \downarrow Cyclins

- MDM2 (after repair)

Transcriptional targets:

- CDKN1A (p21)
- GADD45: DNA repair
- BAX: Channel
- PUMA: Bcl-2 antagonist
- miRNA
 - \downarrow Bcl-2
 - \downarrow Cyclins
- MDM2 (after repair)

TGFβ pathway signalling

Potent inhibitor of proliferation

Type II receptor mutations:

- Colon
- Stomach
- Endometrium

SMAD4 mutations:

- Pancreas

Immune evasion, Angiogenesis, EMT

Contact Inhibition, NF2, and APC

Not fully understood

E-Cadherin homodimeric interaction

Contact Inhibition, NF2, and APC

Neurofibromin-2 (merlin)

*NF*2 homozygous loss = neurofibromatosis type 2:

noncancerous tumors in the nervous system (e.g. acoustic neuromas)

Contact Inhibition, NF2, and APC

adenomatous polyposis coli

β-catenin targets:

- growth-promoting genes Cyclin D1 MYC
- Transcriptional regulators TWIST SLUG/SNAIL

 \downarrow

 $\downarrow \text{E-cadherin expression} \rightarrow$

↓ Contact inhibition

Role in **EMT**

EMT

Downregulation of E-cadherin, ZO1 Cell-cell junction dissolution

Loss of apical-basolateral cell polarity

Actin reorganization

Upregulation of metalloproteases Increased deposition of extracellular matrix proteins

Migration and invasion

Hallmarks of Cancer Evasion of Cell Death

Mitochondrial (intrinsic)

Mitochondrial permeability is key

controlled > 20 proteins

Cytochrome c + cofactors, activates caspase-9

Anti-apototic proteins are inhibited

Bcl-2 & Bcl- x_L levels are reduced

Responsible for apoptosis in most situations

Death receptor (extrinsic)

TNF receptor family

Responsible for apoptosis of self-reactive lymphocytes and target cells of some cytotoxic T lymphocytes

Fas or FasL mutations result in autoimmune diseases

Caspase-8 may cleave and activate Bid a "BH3 sensor" activating the mitochondrial pathway

Some viruses produce homologues of FLIP

Apoptosis abnormalities

Bcl-2 over-expression:

- Follicular B cell lymphoma (85%)
- t(14;18)
- Indolent growth

Reduced CD95 levels FLIP over-expression IAP over-expression

Greek: auto, self; phagy, eating

- Survival mechanism/nutrient deprivation
- Organelle turnover
- Has a role in cancer (anti or pro depending on internal/external factors)

- Regulatory overlap with apoptosis
- BH3 sensor Beclin-1 can induce apoptosis or autophagy