

Microbiology Lecture No: 9-(3 viro) Dr Name: Hamed Al Zoubi Done by: Mohammad Akkawi Sheet Slide

Mrym Ghuloom

Sheet #9

Introduction to Microbiology Dr. Hamed Date: 04/10/2014

بسم الله الرحمن الرحيم

Today we are going to continue what we started to talk about viral replication and life cycle.

- 1-formation of viral mRNA
- 2-replication
- 3-control of viral replication
- 4-synthsis of viral proteins (talk a little bit about mutations)
- 5-post-translation modifications of viral proteins
- 6-assembly, release and maturation

Formation of viral mRNA & replication :

This picture here is a clarification to (Mechanism of replication of +ve ssRNA):

- 1. +ve ssRNA enter the cell and become translated into early proteins (the early genes will be translated into early proteins)
- 2. one of the early proteins is RNA polymerase
- 3. the RNA POLYMERASE will act on the +ve ssRNA and convert it into -ve
- 4. the -ve will act as a template to create many +ve copies

one –ve copy <u>**RNA**</u> polymerase **many** +ve copies

- 5. +ve copies are used to:
- a- synthesize structural proteins (ex: the capsid)

b- synthesize the genetic material of the offspring

*** **NOTE:** we have an **intermediate stage** (in which the +ve will become a – ve)

WHY?!! This -ve copy will act as a **template to copy more +ve**, because originally we only have 1 +ve copy and this 1 copy will not be able to make a lot of copies from itself .

What are the proteins that will be expressed from the positive copy ? (there is a question mark on it)

1-structural proteins

2- early proteins : like RNA polymerase and it will be packed with the virus

Sheet #9

Retrovirus replication mechanism-in brief-:

retrovirus replication mechanism:

- The ssRNA will replicate itself into dsRNA
- 2. The dsRNA will be reverse transcribed into a DNA molecule by (reverse transcriptase) dsRNA <u>REVERSE TRANSCRIPTASE</u> DNA
- The DNA molecule will be integrated into the human DNA (cut a part of the cellular DNA and ligate itself) by integrase enzyme
- **4.** The viral DNA molecule will be translated and transcribed just like the human DNA

control of viral replication:-

1-transcription:

- -might be blocked by **<u>M PROTEINS</u>**
- might be enhanced by **some viral or signal structure** such as:

1-overlapping reading frame

2 – primary RNA transcript splicing

2-translation:

-Usually happens at the ribosome

-Some viruses bind directly to the human ribosomes and compete with our mRNA (competition mechanism) eg:poliovirus,hepatitis A+C (they bind using special structures)

#synthesis of viral proteins:

Starts at the <u>start codon</u> (ATG,AUG) and stops at the stop codon (UAA , UAG,UGA)

<u>#mutations:</u>

Some mutations take place during the amplification of the virus due to many reasons some of them are:

RNA polymerase:

- it has some mistake /some error rate

- It does not have **proof reading (checking the last nucleotide if it`s In the right place)**

One of these errors is mismatch

- Base substitution:
 - 1. Silent mutation: eg
 - $\begin{array}{ccc} UCU & \longrightarrow & UCC \\ SER & \longrightarrow & SER \end{array}$

So nothing has changed before and after

2. Missense mutations: it's a point mutation at which a single nucleotide change results in a codon that codes for a different amino acid

Ex : <u>GAA</u> give rise to <u>glutamic acid</u> which is a different amino acid from <u>aspartic</u> <u>acid</u> which arise from <u>GAC</u>

M	issense	Mutation	15
ATG	GAA	GCA	CGT
Met	Glu	Ala	Gly
ATG	GA	GCA	CGI

3. Nonsense: it's a point mutation in the sequence of nucleotides that results in a premature stop codon in the transcribed mRNA so there is incomplete translation

ex :**GAA**(glu) TAA(stop codon)

*<u>NOTE:stop codons are (TGA,TAG,TAA) in the DNA and</u> (UGA,UAG,UAA) in the RNA

4.frame shift: it's a genetic mutation caused by insertion and deletion of a nucleotide which will result in a complete different proteins

Frameshift Mutation					
ATG	GAA	GCA	ССТ		
Met	Glu	Ala	Gly		
ATG	AAG	CAC	GT		
Met	Lvs	His			

#post translation modification:

-biochemical modifications

-some of it are important for the 3D structure of protein

You know that the protein has a primary, secondary and tertiary structures

Some changes in these structures are important for the folding and the 3D structure to produce a functional viral protein

Modifications:

- 1- glcosylation
- 2- addition of a sulfate or phosphate
- 3- acylation-addition of acyl group

-Some of the viruses such as **adenovirus** synthesize a **polyprotein** than needs to be spliced by **proteases(could be from the cell or the virus itself)**

#Assembly, release and maturation:

***genomic encapsidation:** the process in which the genetic material of the virus will be entered to the capsid

**NOTE:a lot of budding might cause the cell to kill itself

Medical Committee The University of Jordan

But the general outcome of killing the cell is a characteristic of naked (nonenveloped) viruses .

After release there might be some changes(modifications) for the virus to complete its life cycle

Some of these modifications:-HIV: will cut a part of its capsid so it will change the morphology using proteases coded by the virus

-INFLUENZA: when it comes out it will stick to syalic acid by the Hemaglutinnin it is necessary to set the virus free so this binding (hemagluttinin----syalic acid)and this will be achieved by the help of proteases and <u>neuraminidase</u>

انا اعتذر عن اي خطا سقط سهوا

کل عام و انتم بخیر

Done by : Mohammad Akkawi