ReSPIRATORY SYSTEM

O Anatomy
O Pathology
Physiology
O Pharmacology
O Microbiology

- $P B L$

Dr Name: Yanal Shafagoj Lecture \# 7
Done By: Amani Al Halabi

Sheet
Slide
Other \square

Gas Exchange

We expect from the CVS to achieve the main goal and deliver $\mathbf{2 0 m l}$ of $\mathbf{O 2}$ per each 1dl of arterial blood. While the lungs are expected to maintain normal levels of ABGs; PO2= $\mathbf{9 0} \mathbf{~ m m H g}, \mathrm{PCO2}=\mathbf{4 0} \mathbf{~ m m H g}$, and a pH of 7.4. However, normal levels of ABGs don't afford those 20 ml of O2/1dl blood, thus another mechanism of carrying O 2 should be used.

1 dl of arterial blood contains 20 ml of O . Knowing the cells usually extract only 5 ml ; the extraction/utilization ratio can be calculated $=25 \%$, leaving 15 ml of O 2 in each 1 dl of venous blood " 75% ".

- The extraction ratio during training increases ($50 \%, 75 \%$, etc) and may reach to 100%, meaning you are utilizing the whole 20 ml of O 2 found in each dl of blood.

The heart pumps $5 \mathrm{~L} / \mathrm{min}$ or $50 \mathrm{dl} / \mathrm{min}$, from each dl we extract 5 ml of $\mathrm{O} 2 \rightarrow \mathrm{O} 2$ consumption (at rest) $=50 * 5=250 \mathrm{ml} / \mathrm{min}$. [This consumption may increase 20 folds in a training athlete.]

- Supposing we consume only carbohydrates " Glu $+6 \mathrm{O} 2 \rightarrow 6 \mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}$ ", for each O 2 molecule consumed, you will be producing 1 CO 2 molecule.
- Actually we also use fats and proteins, making the glucose less metabolized, and the consumption of O 2 higher than the production of CO2. This gives a
$\underline{\text { Respiratory Exchange Ratio }=\text { CO2 production } / \mathrm{min}=\underline{200}=80 \% ~}$ O2 consumption/min 250

It is: How much CO2 you produce for the whole O2 consumption.

The plasma contributes to 55% of blood volume.
The plasma is composed of 92% water $+8 \%$ others.

- O2 diffuses to plasma. It has a low solubility in plasma, thus its partial pressure there will go up high rapidly. If it's more soluble then you can still add more O 2 due to its rapid consumption and low PO2.
- PO 2 in arteries $=\mathrm{PO} 2$ in alveoli $=100 \mathrm{mmHg}$.
- To know how much O 2 is soluble in plasma, you apply:
- Henry's law \rightarrow [O2] in plasma= PO2 * Solubility of O2

$$
=100 * 0.003=0.3 \mathrm{ml} / \mathrm{dl} \rightarrow \text { very low! }
$$

- We need at least $5 \mathrm{ml} / \mathrm{dl}$, thus we need a very huge Cardiac output which can't be provided by the heart to deliver the needed O 2 with this low solubility, and this is not the case!
$\rightarrow \mathrm{Hb}$ is enrolled in the delivery of O 2 , as well as many other systems, to achieve proper oxygenation of tissues .

The blood forms 7\% of body weight in males, 6% in females (more fat and unused volumes of fluids), and 8% in infants. We take an average of 7\%.
$\rightarrow 7 \%$ * $70 \mathrm{~kg}=5 \mathrm{~L}$ of blood in an avg man.
$\rightarrow=5000 \mathrm{ml}=5$ million micro liter.
\rightarrow Each micro liter of blood contains 5 million RBCs; each of which carries about 280 million Hb molecules.
\rightarrow Each RBC carries 280 million * $4=1120$ million O 2 molecule.
$\rightarrow 1 \mathrm{Hb}$ molecule has a MW=46.5 Kilodalton *important to know* Any molecule with a MW < 70 Kdalton can be filtered through the kidneys and may be lost in urine. So Hb, potentially, can be lost in urine ONLY IF it's swimming freely in the plasma. Actually it's trapped in RBCs (large cells \rightarrow not filtered), thus Hb is not lost.

- A normal Hb molecule is composed of 2 Alpha +2 Beta chains; Alpha= 141 aa, Beta=146 aa. Normal Hb \rightarrow Alpha2-beta2.
- Other variants include :
- HbF \rightarrow Alpha2-Gamma2 (only appropriate in fetus), 1-2\%.
- HbS \rightarrow Alpha2-BetaS2 (abnormal Beta chains; Valine instead of Glutamate in position \#6.)
- Hb1A \rightarrow Alpha2-Delta2, 1-2\%.
\rightarrow So normal $\mathrm{Hb}(\mathrm{HbA})$ concentration is not 100%.
- Hb amount: in Males $=14-16 \mathrm{~g}$, in Females $=12-14 \mathrm{~g}$. Average $=15 \mathrm{~g} / \mathrm{dl}$.
- Each Hb chain has a heme moiety with $\mathrm{Fe}+2$ in its center. Ferrous Fe (+2) can share electrons, bind O2, and release it, unlike Ferric Fe (oxidized, +3) which cannot bind O2. It needs to be reduced by (NAD-H Meth-Hb Reductase) to Ferrous Fe to be able to love and hate O 2 reversibly.
\rightarrow This Reductase is found in the RBCs to assure that Hb doesn't leave the cells, thus not cleaved by plasma enzymes. When Hb goes to plasma, it also increases its viscosity making it harder for the heart to pump the blood.
- With 100% saturation, 402 molecules are bound to the heme molecule. Sat\% can be less than that, for example: 75\%; meaning that the Hb molecule is carrying only 302 molecules. 50%, 25%, or 0%.
\rightarrow However, for billions of Heme molecules, the Sat\% collectively can be any value from 0-100 (including decimal fractions).
\rightarrow You can never over saturate Hb ; NO 105% saturation!
- When Hb is saturated, 1 g of Hb can reversibly bind 1.34 ml 02.
- For the 15 g Hb in avg individual: 20 ml O 2 are carried. Remember the numbers!
- Hb completes the mission; 20 ml carried $\mathrm{O} 2+$ previously dissolved 0.3.

Although the $\mathbf{O} 2$ dissolved in plasma is neglected, it can help in cases of decreased Hb only if we increase [O2] in inspired air; when you give pure O 2 to a patient (760 mmHg 02), it will be mixed with H 2 O in the airways (47 mmHg), resulting in a net of 713 mmHg 02 enter the lungs and go to the blood.
\rightarrow CO2 will give 40 mmHg in arterial blood. You divide PCO2 on the respiratory exchange ration "R" (0.8). $\rightarrow 40 / .8=50$
\rightarrow Now, $713-50=663 \mathrm{mmHg}$, and this is the final arterial PO2.

Go back to Henry's low $\rightarrow \mathrm{O} 2$ dissolved $=663 * 0.003=2 \mathrm{ml}$ (not enough alone)
\rightarrow If you let the patient breath at 3 atm of pure $02 \rightarrow 2 * 3=6 \mathrm{ml}$
Here you have enough O 2 without the need of Hb , but this is actually lethal \rightarrow O2 poisoning, so you can't do it.

You can also apply these calculations to predict the arterial PO2 if you give the patient an air with PO2 $=42 \%$.

$\mathrm{Hb}-\mathrm{O} 2$ dissociation curve.(please refer to the figure while studying the rest of the sheet)

- Sigmoidal in shape.
- The availability of O2, expressed as PO2, on X-axis \rightarrow (Independent variable)
- The binding of Hb to O 2 , expressed as saturation ($0-100 \%$), on Y -axis \rightarrow (Dependent variable)
- If O 2 is available, it can bind Hb . However, it's not a linear relationship, due to the Cooperative binding of O 2 to Hb . The $1^{\text {st }} \mathrm{O} 2$ to bind needs to overcome many bonding forces, so it's harder to it to bind, making the curve more horizontal initially (phase1). The $2^{\text {nd }} \mathrm{O} 2$ finds it easier to bind, and so forth, making the curve steeper (phase2). The curve finally goes back to platue after 100% saturation is achieved (phase3).
- 4 important "PO2"s concern us mostly, assuming $\mathrm{Hb}=15 \mathrm{~g}$;
- PO2 $=100 \mathrm{mmHg} \rightarrow$ Arterial PO2, tells that sat\% $=98-100 \%$, with 20 ml O2/dl concentration.
- $\mathrm{PO} 2=60 \mathrm{mmHg}$
- $\mathrm{PO} 2=40 \mathrm{mmHg}$
- $\mathrm{PO} 2=26 \mathrm{mmHg}$
\rightarrow If a patient has $\mathrm{Hb}=7.5$ (Anemic): His arterial $\mathrm{PO} 2=100$ (or even more if he hyperventilates), Sat\%=100\%, BUT [O2] conc. $=$ only $10 \mathrm{ml} / \mathrm{dl}$ [7.5*1.34=10].
The lungs have completed their job, they gave you your normal ABGs levels, but this didn't guarantee that you won't develop hypoxia; you're Hb and blood should be normal too!
\rightarrow Normal individuals, with normal ventilation, Hb levels, and blood circulation, who enter the hospital for unrelated causes (e.g:appendectomy), this doesn't really need an 02 mask ($P O 2=42 \%$), he won't benefit due to the fact that his blood is already normally saturated. You will only increase the dissolved O 2 in plasma to become 0.6 ml rather than 0.3, and this again is negligible and not needed. You are only exposing him to more free radicals and 02 poisoning!
- While patients with pneumonia, pulmonary edema, or CO poisoning actually require 02 masks.

If PO2 = 200 mmHg , you would expect the respiratory center to sense this increase and directly act to oppose it and depress it back to 100. However, this doesn't occur. The body knows that this 200 mmHg means nothing, thus the ventilation won't be suppressed!

- When PO2 = 60 mmHg , decreases by 40 degrees from normal, this still doesn't mean that much to your bodily responses. The Sat\% becomes 90%, meaning you now have around 18 ml of $02 / \mathrm{dl}$, and your cells can take their needed $5 \mathrm{ml} / \mathrm{dl}$ calmly without being affected.
\rightarrow The respiratory center won't be stimulated too.
- When PO2 < 60 mmHg , the curve becomes very steep, the neurons start firing causing the respiratory center to stimulate hyperventilation. Hyperventilation: I'm trying hard to make the composition of my alveolar air closer to that of the atmospheric air.
I need to increase PO2 + saturation\%, \& decrease PCO2.
- At PO2 = 40 mmHg , at the interstitial PO2, the Sat\% is 75%.
\rightarrow A 60-degree fall in pressure, decreases the sat\% by only 25%, this is the benefit of the sigmoidal curve.
- During exercising, the PO2 drops to 15 mmHg , making the sat\%=25\%, and increasing the extraction ratio to 75% (instead of normal 25\%) because the cells need too much 02 . The cells during exercising may need up to $4000 \mathrm{ml} / \mathrm{min}$ (16 times more than the normal $250 \mathrm{ml} / \mathrm{min}$).
\rightarrow The extraction ratio is increased by $3 X$ only; so how can we achieve the 16 X increase in consumption?
By increasing the blood flow to tissues; the blood flow to MSS actually increases from 1L (at rest) to over 8L (upon exercising);
$\begin{aligned} \text { O2 consumption } & =\text { Blood Flow } * \text { Extraction Ratio } \\ & =\uparrow 8-10 \text { times } * \uparrow 2-3 \text { times }=\uparrow 16-20 \text { times increase }!\end{aligned}$
- During exercising, the cells will ask the Hb to release/unload/hate its bound O 2 (decreases the affinity), and should force it to do so, by:
- Increasing $\mathrm{CO2}+$ protons production (due to increased work in the cell). CO2 \& $\mathrm{H}+$ will go the Hb chains and bind them at a specific site for each (not the same binding site for O 2 , it's not competitive inhibition). When CO2 binds to its site on the chain, conformational changes occur, resulting in O 2 release, and this is known as "Bohr's effect". Also when $\mathrm{H}+$ binds to its site, the O 2 is released from the chain, again: "Bohr's effect too".
- Increasing temp makes $\mathrm{R}-\mathrm{Hb} \rightarrow \mathrm{T}-\mathrm{Hb}$, thus the O 2 is released.
- Increasing 2,3-BPG; 2,3-BPG is a peripheral product of the anaerobic glycolysis occurring in the RBC, converted from 1,3-BPG by mutase. \# Remember: RBCs carry 02 but can never utilize it for it don't have mitochondria. \# It's an advantage to have the mutase enzyme inside the RBCs, so you can form the 2,3-BPG there.
\rightarrow What 2,3-BPG does actually, is binding to Alpha/Beta chains and decreasing their affinities to $\mathrm{O} 2 \rightarrow$ Unloading(forcing them to lose their Hb). It binds in the center between the 4 chains of the Hb molecule; each 2,3-BPG binds 1 Hb molecule.
- At any PO2 value, the sat\% will be less. (The curve is shifted downward, and to the right.)
\rightarrow 2,3-BPG doesn't bind Gamma chains.
- A decrease in any of these factors [CO2, $\mathrm{H}+$, Temp, 2,3-BPG] will cause the curve to be shifted to the left; increased affinity.

Finally, The doctor asked you to take a couple of minutes thinking about all these miracles in your cells, and saying سبحان الها .

