

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Lipids

RITTED

Lipids – Definition & General Properties

- A heterogeneous class of naturally occurring organic compounds
- Formed mainly from <u>alcohol & fatty acids</u> combined together by <u>ester linkage</u>

- They are <u>Amphipathic</u> in nature
- <u>Insoluble in water</u>, but soluble in fat or organic solvents (ether, chloroform, benzene, acetone)
- They are widely distributed in plants & animals

Lipids – function & biological importance

- 1) They are storable to <u>unlimited amount (vs. carbohydrates</u>)
- 2) They provide considerable amount of <u>energy</u> to the body (25% of body needs) & provide a high-energy value (more energy per gram vs. carbohydrates & proteins)
- 3) Supply the <u>essential fatty acids (</u>PUFAs)
- 4) Supply the body with <u>fat-soluble vitamins</u> (A, D, E & K)
- 5) They are important constituents of the <u>nervous system</u>
- 6) <u>Structural</u> (cell membrane): cholesterol & fatty acids

Lipids – function & biological importance

7) Stored lipids are <u>in all human cells</u> & acts as:

- A. A store of <u>energy</u>
- **B.** <u>A pad</u> for the internal organs
- C. A subcutaneous <u>thermal insulator</u> against loss of body heat
- 8) Combine with proteins "<u>Lipoproteins</u>"
- 9) Precursor for: <u>adrenal cortical hormones</u>, <u>sex hormones</u>, <u>vitamin D₃ & bile acids</u>

Classification of Lipids

- Lipids include:
 - Open Chain forms
 - Fatty acids, triacylglycerols, sphingolipids, phosphoacylglycerols, glycolipids,
 - Lipid-soluble vitamins
 - Prostaglandins, leukotrienes, & thromboxanes
 - ✓ Cyclic forms
 - Cholesterol, steroid hormones, & bile acids

- Lipids include:
 - Derived Lipids (glycerol & sphingosine)
 - Simple lipids (Fats, oils, & Waxes)
 - Compound, conjugated, or complex lipids
 - Cyclic lipids (steroids)
 - Lipid-associating substances (vitamins)
- Lipids include:
 - ✓ Storage Lipids
 - Structural Lipids in Membranes
 - Lipids as Signals, Cofactors & Pigments

Classification of Lipids

- Lipids include:
 - ✓ Derived Lipids (glycerol & sphingosine)
 - Simple lipids (Fats, oils, & Waxes)
 - Compound, conjugated, or complex lipids
 - Cyclic lipids (steroids)

Lipid-associating substances (vitamins)

Fatty alcohols - Glycerol

- Trihydroxylic alcohol
- Popular name: glycerin
- Synthesized from glucose

СН₂-ОН HO-СН CH₂-ОН CH₂-ОН Glycerol CH₂-ОН Glycerol

Properties:

- CH₂—ONO₂ | CH—ONO₂ Trinitroglycerin | CH₂—ONO₂
- 1) <u>Colorless viscous</u>oily liquid with <u>sweet taste</u>
- On <u>heating with sulfuric acid or KHSO₄ (dehydration) it gives</u> <u>acrolein that has a bad odor (detection)</u>
- 3) Combines with three molecules of nitric acid to form <u>trinitroglycerin</u> that is used as a vasodilator

Glycerol

- 4) Nutritive value (glucose)
- 5) In structure of phospholipids
- 6) On esterification with fatty acids it gives:
 - A. Monoglyceride or monoacyl-glycerol
 - **B.** Diglyceride or diacyl-glycerol
 - C. Triglyceride or triacyl-glycerol

Fatty alcohols - Sphingosine

- It is the fatty alcohol present in sphingolipids
- It is synthesized in the body from serine & palmitic acid
- <u>Tests negative</u> with acrolein test

Fatty Acids

- Aliphatic <u>mono-carboxylic acids</u>
- Obtained from hydrolysis
- Formula: R-(CH₂)_n-COOH
 "n": mostly even (2-36)
- Mostly straight chain (a few exceptions are branched)
- Amphipathic molecules (bilayers & micelles)
- Saturated vs. unsaturated

Fatty Acid Structure

- Saturated fatty acids N:o
- Unsaturated Fatty acids: cis isomer predominates; trans is rare
- Double bonds specified by (Δⁿ)

Common $_{16}^{16}$ Palmitoleic acid (ω 7, 16:1, Δ^9) Fatty Acids $_{18}^{16}$ M_{9}^{16} M_{16}^{16} M_{16}^{16} M_{18}^{16} M				
*Linoleic acid (ω 6, 18:2, $\Delta^{9,12}$) COOH \land 14 11 8 5 COOH \land 5 COOH \land 14 11 11 11 11 11 11 11				
No. of carbons	No. of double bonds	Common name	Systematic name	Formula
14	ο	Myristate	n-Tetradecanoate	CH ₃ (CH ₂) ₁₂ COO ⁻
16	ο	Palmitate	n-Hexadecanoate	CH ₃ (CH ₂) ₁₄ COO-
18	ο	Stearate	n-Octadecanoate	CH ₃ (CH2) ₁₆ COO-
18	1	Oleate	cis-🎝 º-Octadecenoate	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COO-
18	2	Linoleate	cis, cis-∆ ⁹ , ∆ ¹² - Octadecadienoate	CH ₃ (CH ₂) ₂ (CH=CHCH ₂) ₂ (CH ₂) ₆ COO-
18	3	Linolenate	all-cis-Δ ⁹ ,Δ ¹² ,Δ ¹⁵ - Octadecatrienoate	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COO-
20	4	Arachidonate	all-cis-Δ ⁵ ,Δ ⁸ ,Δ ¹¹ ,Δ ¹⁴ - Eicosatetraenoate	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₄ (CH ₂) ₂ COO-

Another way of naming

(ω)-C: distal methyl C as #1

Numerical Symbol	Common Name and Structure	Comments
18:1 ^{∆9}	Oleic acid	Omega-9 monounsaturated
18:2 ^{∆9,12}	Linoleic acid	Omega-6 polyunsaturated
18:3^{∆9,12,15}	$\alpha-\text{Linolenic acid (ALA)}$	Omega-3 polyunsaturated
20:4^{∆5,8,11,14}	Arachidonic acid	Omega-6 polyunsaturated
20:5 ^{∆5,8,11,14,17}	Eicosapentaenoic acid (EPA) $\omega \xrightarrow{17}_{6} \xrightarrow{14}_{9} \xrightarrow{11}_{8} \xrightarrow{5}_{6} \xrightarrow{\alpha}_{C-OH}$	Omega-3 polyunsaturated (fish oils)
22:6 ^{4,7,10,13,16,19}	Docosahexaenoic acid (DHA) $\omega \xrightarrow{19}_{6} \xrightarrow{16}_{9} \xrightarrow{10}_{7} \xrightarrow{7}_{4} \xrightarrow{0}_{\alpha} \xrightarrow{0}_{-OH}$	Omega-3 polyunsaturated (fish oils)

Fatty Acids - Physical Properties

Solubility

Longer chains

- The more hydrophobic, the less soluble
- Double bonds increase solubility

Typical Naturally Occurring Saturated Fatty Acids				
Acid	Number of Carbon Atoms	Formula	Melting Point (°C)	
Lauric	12	$CH_3(CH_2)_{10}CO_2H$	44	
Myristic	14	$CH_3(CH_2)_{12}CO_2H$	58	
Palmitic	16	$CH_3(CH_2)_{14}CO_2H$	63	
Stearic	18	$CH_3(CH_2)_{16}CO_2H$	71	
Arachidic	20	$CH_3(CH_2)_{18}CO_2H$	77	

Typical Naturally Occurring Unsaturated Fatty Acids

Melting points

 Depend on chain length & saturation

Double bonds lead to low melting temps

Acid	Number of Carbon Atoms	Degree of Unsaturation*	Formula	Melting Point (°C)
Palmitoleic	16	$16:1-\Delta^{9}$	$CH_3(CH_2)_5CH = CH(CH_2)_7CO_2H$	-0.5
Oleic	18	$18:1-\Delta^{9}$	$CH_3(CH_2)_7CH = CH(CH_2)_7CO_2H$	16
Linoleic	18	$18:2-\Delta^{9,12}$	$CH_3(CH_2)_4CH=CH(CH_2)CH=CH(CH_2)_7CO_2H$	-5
Linolenic	18	$18:3-\Delta^{9,12,15}$	$CH_3(CH_2CH=CH)_3(CH_2)_7CO_2H$	-11
Arachidonic	20	$20:4-\Delta^{5,8,11,14}$	$CH_{3}(CH_{9})_{4}CH = CH(CH_{9})_{4}(CH_{9})_{9}CO_{9}H$	-50

Classification - Double Bonds

- 1) Saturated Fatty Acids
 - A. <u>No double bonds</u>
 - B. <u>Solid</u> at room temperature (short chained?)
 - C. Even or odd numbered
 - **D.** The following molecular formula, $C_n H_{2n+1} COOH$
 - E. They are either:
 - i. Short chain F.A. (1-6 carbons)
 - ii. Medium-chain F.A. (7-10 carbons)
 - iii. Long chain F.A.(more the 10 carbon)

Saturated fatty acids

Short & Medium chain F.A.

SHORT CHAIN F.A.

- They are <u>liquid in nature</u>
- Water-soluble
- <u>Volatile</u> at room temperature
- Examples: <u>acetic</u>, butyric, & caproic acids

Acetic F.A. (2C) CH_3 -COOH Butyric F.A. (4C) CH_3 - $(CH_2)_2$ -COOH Caproic F.A. (6C) CH_3 - $(CH_2)_4$ -COOH

MEDIUM-CHAIN F.A.

- Solids at room temperature
- Water-soluble
- <u>Non-volatile</u> at room temperature
- Examples: caprylic & capric
 F.A.

Caprylic (8 C) $CH_3^{-}(CH_2)_6^{-}COOH$ Capric (10 C) $CH_3^{-}(CH_2)_8^{-}COOH$

Long-chain & Unsaturated F.A.

LONG CHAIN

- Occur in <u>hydrogenated oils</u>, animal fats, butter & coconut & palm oils
- Non-volatile & water-insoluble
- Examples: <u>palmitic, stearic</u>, & lignoceric F.A.

Palmitic (16C) $CH_3 - (CH_2)_{14} - COOH$ Stearic (18 C) $CH_3 - (CH_2)_{16} - COOH$ Lignoceric (24C) $CH_3 - (CH_2)_{22} - COOH$

- 2. UNSATURATED
- Monounsaturated:
 - One double bonds
 - Formula (C_nH_{2n-1} COOH)
- Polyunsaturated:
 - More than one double bond
 - (C_nH_{2n}-more than 1</sub>COOH)
- Do not pack closely (Cis)

Monounsaturated fatty acids

- <u>Palmitoleic acid (16)</u>: CH₃-(CH₂)₅CH = CH-(CH₂)₇-COOH
 It is found in all fats
- It is C16:1Δ⁹, (16 C_s & one double bond at C₉₋₁₀)
- 2) <u>Oleic acid (18):</u>
- Is the most common fatty acid in natural fats
- It is C18:1 Δ^9 CH₃-(CH₂)₇- CH=CH (CH₂)₇-COOH
- 3) <u>Nervonic acid:</u> (Unsaturated lignoceric acid)
- It is found in cerebrosides
- It is C24:1 Δ^{15} CH₃ (CH₂)₇ CH= CH (CH₂)₁₃- COOH

Polyunsaturated fatty acids "Essential fatty acids"

- <u>1-Linoleic (18;2):</u> C18:2 $\Lambda^{9, 12}$ CH₃-(CH₂)₄-CH = CH-CH₂-CH=CH-(CH₂)₇-COOH
- It is the most important since other fatty acids can be synthesized from it in the body. $\omega 6$
- <u>2-Linolenic acid (18;3)</u>:
- **C18:3**^{Δ9, 12, 15} CH₃-CH₂-CH=CH-CH₂-CH=CH-CH₂-CH=CH-(CH₂)₇-COOH
- In corn, peanut, olive, cottonseed & soybean oils. ω_3
- 3-Arachidonic acid (20;4):
- CH₃-(CH₂)₄-CH=CH-CH₂-CH=CH-CH₂-CH=CH-(CH₂)₃-COOH **C20:4**^{5, 8, 11, 14}
- It is an important component of phospholipids in animal & in peanut oil from which prostaglandins are synthesized

Simple Lipids A. Neutral Fats & oils (Triacylglycerols)

- 1. Esters of glycerol with F.A
 - Commonest: palmitic, stearic & oleic
- 2. <u>Uncharged</u> due to absence of ionizable groups in it

3. Most abundant lipids in nature

No. of carbons	No. of double bonds	Common name	Systematic name	Formula
16	0	Palmitate	n-Hexadecanoate	CH3(CH2)14COO-
18	Ο	Stearate	n-Octadecanoate	CH3(CH2)16COO-
18	1	Oleate	cis- Δ^9 -Octadecenoate	CH3(CH2)7CH=CH(CH2)7COO-

Simple Lipids A. Neutral Fats & oils (Triacylglycerols)

Physical properties of fat & oils

- 1. Freshly prepared are <u>colorless</u>, <u>odorless</u> & <u>tasteless</u> (the yellow color is due to carotene pigments)
- 2. Fats have <u>specific gravity less than 1</u>
- **3.** Fats are <u>insoluble in water (organic solvents as ether & benzene)</u>
- 4. Room temperature: Oils (liquid) vs. fats (solids)

Chemical Properties of fats & oils (Reactions)

- A. Hydrolysis :
 - Steam, acid, enzyme (e.g., lipase of pancreas)
- **B.** Saponification:
 - Alkaline hydrolysis: produces salts of fatty acids (soaps)
 - Soaps cause emulsification of oily material

Emulsification

 Because of their amphipathic nature, the act as emulsifying agents, that is substances that can surround nonpolar molecules and keep them in suspension in water

Chemical Properties of fats & oils

- C. Halogenation: added to unsaturated F.A (e.g., iodination)
 - Used to determine the <u>degree of unsaturation</u> of the fat or oil that determines its biological value

$$CH_{3}-(CH_{2})_{4}-CH=CH-CH_{2}-CH=CH-(CH_{2})_{7}-COOH$$
Linoleic acid
$$2 I_{2}$$

$$CH_{3}-(CH_{2})_{4}-CH-CH-CH_{2}-CH-CH-(CH_{2})_{7}-COOH$$
I I I I I I
Stearate-tetra-iodinate

Chemical Properties of fats & oils

- D. Hydrogenation or hardening of oils:
 - Addition reaction (unsaturated F.A)
 - Done under high pressure of hydrogen
 - The basis of hardening oils (margarine manufacturing)
 - Hydrogenation converts cis-double bonds to trans

Chemical Properties of fats & oils

- D. Hydrogenation or hardening of oils:
 - Chemists invented partial hydrogenation
 - Converts some, but not all, double bonds into single bonds
 - Called (trans fat): elevated risk of coronary heart disease (CHD)
 - Advantages: more pleasant, easily stored & transported, less liable to oxidation
 - Disadvantages: lack of fatsoluble vitamins (ADEK) & essential fatty acids

Simple Lipids B. Waxes

- 1. <u>Solid</u> simple lipids
- Contains a monohydric alcohol (C16 ~ C30), (<u>higher molecular</u> <u>weight than glycerol</u>) <u>esterified to long-chain fatty acids</u> (C14 ~ C36). Examples: palmitoyl alcohol
- 3. Insoluble in water & Negative to acrolein test
- Are not easily hydrolyzed (fats) & are indigestible by lipases (<u>nutritional value</u>)
- 5. <u>Coatings:</u> prevent loss of water by leaves of plants

Туре	Structural Formula	Source	Uses	
Beeswax	$CH_3(CH_2)_{14} - C - O - (CH_2)_{29}CH_3$	Honeycomb	Candles, shoe polish, wax paper	
Carnauba wax	$CH_3(CH_2)_{24} - C - O - (CH_2)_{29}CH_3$	Brazilian palm tree	Waxes for furniture, cars, floors, shoes	
Jojoba wax	$CH_3(CH_2)_{18} \rightarrow C - O - (CH_2)_{19}CH_3$	Jojoba	Candles, soaps, cosmetics	

Differences between neutral lipids & waxes

Property	Waxes	Neutral lipids
1.Digestibility	Indigestible (not hydrolyzed by lipase)	Digestible (hydrolyzed by lipase)
2-Type of alcohol	Long-chain monohydric alcohol + one fatty acid	Glycerol (trihydric) + 3 F.A
3-Type of F.A	Mainly palmitic or stearic acid	Long & short chain F.A
4-Acrolein test	Negative	Positive
5-Nature at room temperature	Hard solid	Soft solid or liquid
6-Saponification	Nonsaponifiable	Saponifiable
7-Nutritive value	No nutritive value	Nutritive
8-Example:	Bees wax	Butter & vegetable oils

Compound (conjugated) Lipids

- They are lipids that contain additional substances, e.g., sulfur, phosphorus, amino group, carbohydrate, or proteins beside fatty acid & alcohol
- Classified into the following types according to the nature of the additional group
 - **1.** Phospholipids
 - 2. Glycolipids
 - 3. Lipoproteins
 - 4. Sulfolipids & amino lipids

1. Phospholipids (phosphatides)

- **1.** Contain phosphoric acid group
- **2.** Every animal & plant cell:
 - Membranes of cells & subcellular organelles
- Important role in signal transduction across membranes
- 4. Snake venom hydrolyses membrane phospholipids
- 5. A source of polyunsaturated F.A

O = P - OCH2-CH-CH2 C=O C=O СН2 СН2 CH2 CH2 CH2 \mathbf{CH} \mathbf{CH} CH2CH2 CH2 CH2CH2CH2 CH2CH3 CH3

1. Phospholipids (phosphatides)

Structure:

- Fatty acids (saturated & unsaturated)
- 2. <u>Fatty alcohols</u> (glycerol & sphingosine)
- 3. Phosphoric acid
- <u>Nitrogenous base</u>
 (choline, Ser, Thr, or ethanolamine)

- Classification: according to the type of the alcohol
 - > Glycerophospholipids
 - Phosphatidic acids
 - Lecithins
 - Cephalins
 - Plasmalogens
 - Inositides
 - Cardiolipin
 - Sphingophospholipids: sphingosine as an alcohol

Glycerophospholipids -Phosphatidic acids

Glycerophospholipids - Lecithins

- Choline as a nitrogenous base
- Most abundant membrane lipid

Choline

- CH₂-CH₂-N(CH₃)₃

Glycerophospholipids - Lecithins

Snake venom: <u>lecithinase hydrolyzes PUFAs</u> converting lecithin into lysolecithin (hemolysis of RBCs)

Glycerophospholipids -Cephalins or Kephalins

- Choline is replaced by ethanolamine, serine or threonine
- Occur in association with lecithins in tissues
- Isolated from the brain (Kephale = head)

$$\begin{array}{c} O \\ \mathbf{R}_{2} - \mathbf{\ddot{C}} - \mathbf{O} - \mathbf{\ddot{C}} - \mathbf{H} \\ 0 \\ \mathbf{CH}_{2} \cdot \mathbf{O} - \mathbf{\ddot{P}} - \mathbf{O} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{NH}_{2} \\ \mathbf{CH}_{2} \cdot \mathbf{O} - \mathbf{\ddot{P}} - \mathbf{O} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{NH}_{2} \\ \mathbf{CH}_{2} \cdot \mathbf{O} - \mathbf{\ddot{P}} - \mathbf{O} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{NH}_{2} \\ \mathbf{CH}_{2} \cdot \mathbf{O} - \mathbf{\ddot{P}} - \mathbf{O} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{CH}_{2} \\ \mathbf{CH}_{2} - \mathbf{CH} - \mathbf{COOH} \\ \mathbf{NH}_{2} \\ \mathbf{HO} - \mathbf{CH} - \mathbf{CH} - \mathbf{COOH} \\ \mathbf{NH}_{2} \\ \mathbf{HO} - \mathbf{CH} - \mathbf{CH} - \mathbf{COOH} \\ \mathbf{Threonine} \\ \mathbf{CH}_{3} \\ \mathbf{NH}_{2} \end{array}$$

Glycerophospholipids -Plasmalogens

- Found in the cell membrane phospholipids of brain, muscle, liver, & semen
- They have a protective role against ROS
- Structure:
 - Precursor: Dihydroxyacetone phosphate
 - Unsaturated fatty alcohol at C1 connected by ether bond
 - In mammals: at C3; phosphate + ethanolamine or choline

Major classes of plasmalogens

- Ethanolamine plasmalogen (myelin cells-nervous tissues)
- Choline plasmalogen (cardiac tissue)
 - Platelet activating factor
- Serine plasmalogens (retina)

$$H_2C - O - CH_2 - (CH_2)_{16} - CH_3$$

 $HC - O - C - CH_3$
 $U - O - C - CH_3$
 $H_2C - O - P - O - CH_2CH_2N(CH_3)_3$

Glycerophospholipids - Inositides

- Phosphatidyl inositol
- Nitrogenous base: cyclic sugar alcohol (inositol)
- Structure: glycerol, saturated F.A, unsaturated F.A, phosphoric acid & inositol
- Source: Brain tissues
- Function:
 - Major component of cell membrane
 - Second messenger during signal transduction
 - On hydrolysis by phospholipase C, phosphatidyl-inositol-4,5diphosphate produces diacyl-glycerol (DAG) & inositol-triphosphate (IP3); which liberates calcium

Glycerophospholipids - Cardiolipins

- Diphosphatidyl-glycerol
- Structure: 3 molecules of glycerol, 4 fatty acids & 2 phosphate groups
- Found in the inner membrane of mitochondria
- Initially isolated from heart muscle (cardio)

The different structures of phospholipids

Uses of liposomes: delivery

Sphingophospholipids – Sphingomyelins & Ceramides

- Sphingomyelins: found in large amounts in brain & nerves
- Structure:
 - Sphingosine as the alcohol
 - Two nitrogenous bases: sphingosine itself & choline (C1)
 - One long-chain fatty acid
 - Phosphoric acid
- Ceramides: the amino group of sphingosine is attached to a F.A by an amide linkage
 - Found in spleen, liver & RBCs

2. Glycolipids

- Contain carbohydrate residues
- Sphingosine as the alcohol \succ
- Contains a very long-chain fatty acid \succ
 - They are present in cerebral tissue (cerebrosides)
 - Classification: number & nature of carbohydrate present;
 - 1) Cerebrosides: have one galactose or glucose molecule. Myelin sheath of nerves & white matter of the brain

2. Glycolipids

- 2) Sulfatides: galactocerebrosides with sulfate on the sugar (sulfated cerebrosides).
 - Abundant in brain myelin

3) Gangliosides: have several sugar & sugaramine residues. Brain, ganglion cells, & RBCs. Receptor for cholera toxin in the human intestine

Ceramide-Glucose-Galactose-N-acetylgalactosamine-Galactose
Sialic acid
Monosialoganglioside

Sphingolipids & blood groups

