ACIDOSIS - ALKALOSIS

Buffers II

Dr. Diala Abu-Hassan, DDS, PhD <u>Dr.abuhassand@gmail.com</u> Lecture 5 MD summer 2014

Buffer systems in the body:

1.The bicarbonate-carbonic acid buffer system (ECF)

- 2. The hemoglobin buffer system in RBCs
- 3. The phosphate buffer system in all types of cells
- 4. The protein buffer system of cells and plasma.

The bicarbonate–carbonic acid buffer system in blood

The bicarbonate–carbonic acid buffer system in blood

 $CO_{2(g)} + H_2O_{(I)} \leftarrow H^+_{(aq)} + HCO_3^-_{(aq)}$

pKa of H_2CO_3 is 6.1, while the pH of human blood is 7.4

$$7.4 = 6.1 + \log [HCO_3^{-1}] / [CO_2]$$

 $1.3 = \log [HCO_3^{-1}] / [CO_2]$
 $[HCO_3^{-1}] / [CO_2] = 20$

 \longrightarrow most of the dissolved CO₂ is present as HCO₃⁻ Normal values: pH = 7.4 pCO₂ = 40 mm Hg (~ 1.2 mM) [HCO₃⁻] = 25 mM

What happens when the pH of the blood drops?

- Low pH means more H⁺

 $H_{(aq)}^{+} + HCO_{3}(aq) \longleftrightarrow H_{2}CO_{3(aq)} CC$ $H_{2}CO_{3(aq)} \longleftrightarrow CO_{2(aq)} + H_{2}O_{(l)}$ $CO_{2(aq)} \longleftrightarrow CO_{2(g)} \text{ exhaled by the lungs}$

-Aspirin

-High altitudes - rate of respiration increases.

-Athelete example

What happens when the pH of the blood increases?

- Higher pH means more OH-

 $NaOH + H_2CO_3 \longrightarrow NaHCO_3 + H_2O$

 $CO_2 + H_2O \longrightarrow H_2CO_3$ to replace the consumed acid

 $[CO_2]$ decrease and respiration decrease to reduce the rate of CO_2 consumption.

 $[HCO_3^{-}] / [CO_2] = 25 \text{ mM} / 1.25 \text{ mM} = 20$

Buffer range = $6.1 \pm 1 = 5.1-7.1$

Protein Buffers

-Because of the presence of the dissociable acidic (-COOH) and basic (-NH2) groups, proteins act as buffers.

-Particularly the imidazole group of the side chain of histidine residue (pKa = 7.3)

Proteins, specifically Albumin, account for 95% of non-carbonate buffering action in plasma (has 16 His/mole)

Histidine

Phosphate Buffer systems

-Phosphate anions and proteins are important buffers that maintain a constant pH of ICF.

-Intracellular and tubular fluids of kidney

- $H_2PO_4^{-1}$ dissociates to H ⁺ and HPO₄⁻²

-pKa is 7.1-7.2

- In RBCs 2,3 BPG is 4.5 mM contributing to ~16% Non carbonate buffer function.

- Glu-6P, ATP act as buffers

 $H^+ + Na_2HPO_4$

 $OH^{-} + NaH_2PO_4$

Hemoglobin (Hb) Buffer

-Major intracellular buffer of the blood

-Hb has a high number of His (38 molecules/mole of Hb)

-Works cooperatively with the bicarbonate buffer system

-It buffers CO₂ and H₂CO₃

More details in the 3rd year

Buffer systems of the body

HG. 4.9. Buffering systems of the body. CO_2 produced from cellular metabolism is converted to bicarbonate and H⁺ in the red blood cells. Within the red blood cells, the H⁺ is buffered by hemoglobin (Hb) and phosphate (HPO₄²⁻) (*circles 4 and 6*). The bicarbonate is transported into the blood to buffer H⁺ generated by the production of other metabolic acids, such as the ketone body acetoacetic acid (*circle 5*). Other proteins (Pr) also serve as intracellular buffers. See the text for more details.

Done or not yet?!

Change FB status to "in a relationship" with biochemistry textbook

