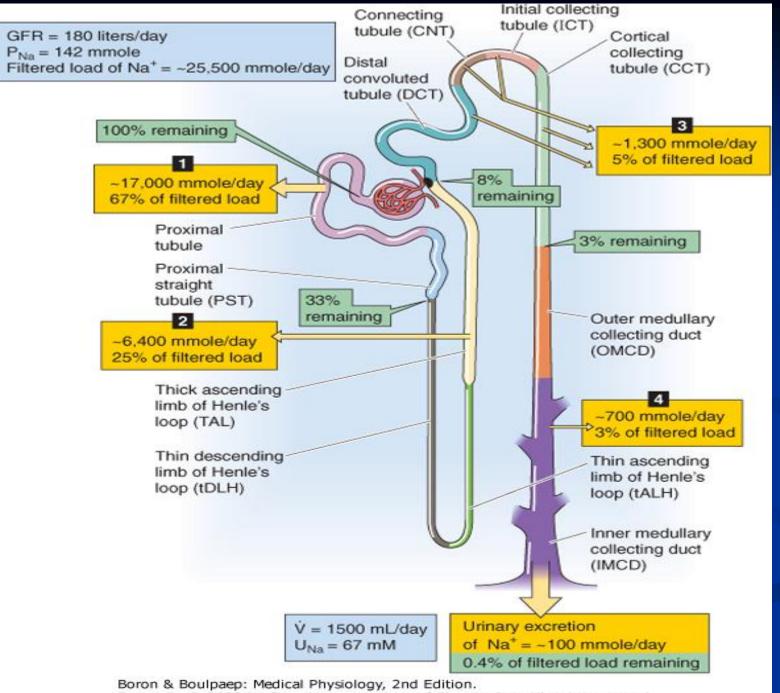
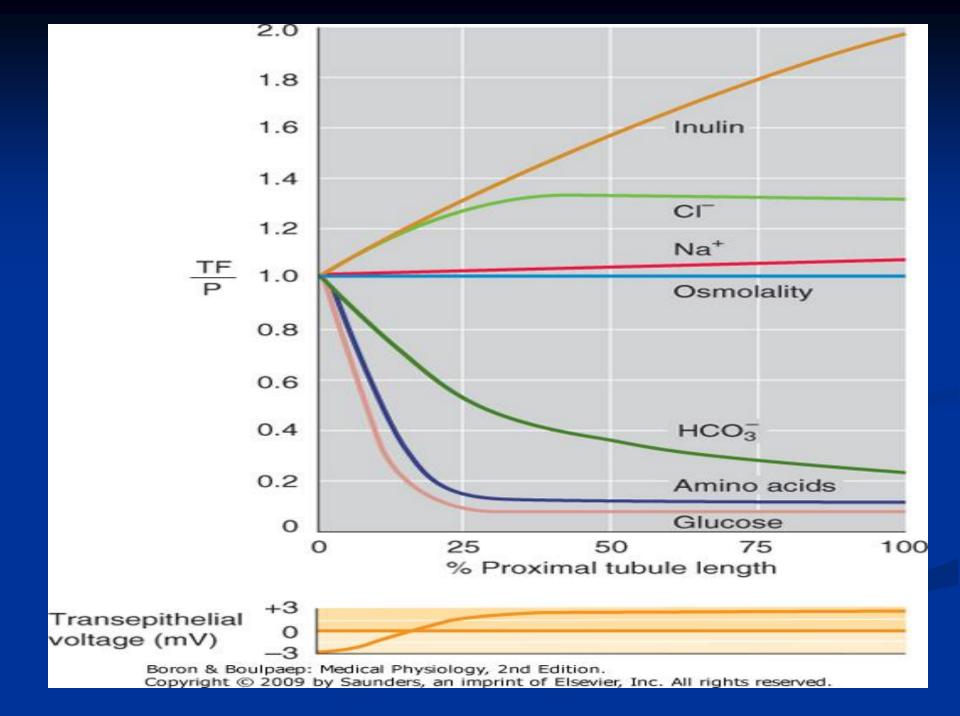

Sodium Homeostasis


- Sodium is an electrolyte of major importance in the human body. It is necessary for :
- 1. normal extracellular volume dynamics
- 2. excitability of certain tissues
- 3. cotransport and countertransport
- 4. countercurrent mechanism
- 5. concentration of urine
- 6. Sodium accounts for a significant portion of plasma osmolarity. The latter can be estimated by multiplying plasma sodium concentration times 2.1.

Sodium Homeostasis

- Sodium balance is achieved when intake and output equal each other.
- Sodium intake is about 120-155 mmol/d in the average American diet. Logically, the daily output would be 120-155mmol/d as well.
- The kidney accounts for 115-150 mmol of this output. Hence, the kidney is a major organ in sodium homeostasis.

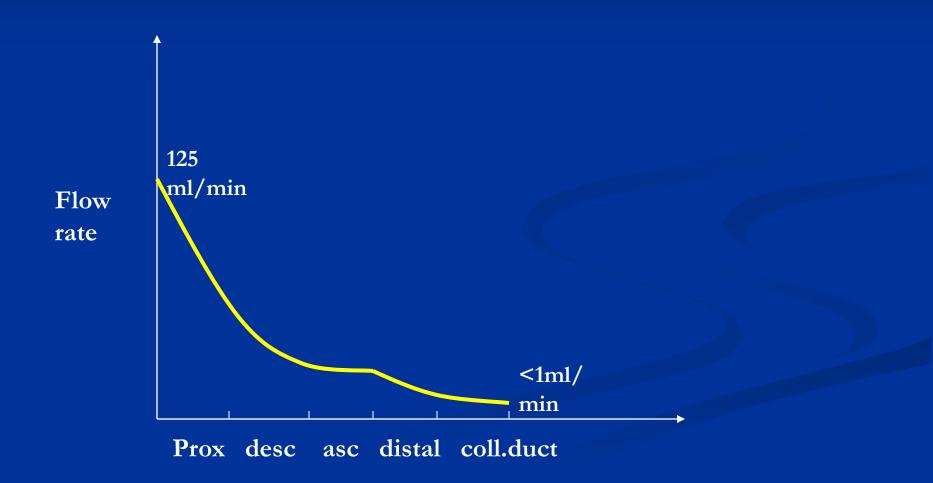
Boron & Boulpaep: Medical Physiology, 2nd Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.


Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Na Clearence

- Sodium clearance can be calculated as follows:
- $U_{Na+} = 150 \text{mmol/d} \div 1.51/\text{d}$ urine per day = 100 mmol/l
- \Box C_{Na+} = (U_{Na+} / P_{Na+}) * V = (100 / 145) * 1 = 0.69ml/min
- Notice that the value is less than 1 ml/min, which indicates that sodium is mostly reabsorbed.
- Sodium reabsorption is rather extensive. In order to appreciate this, let's do the math.
- Amount of sodium filtered per day = 180l/d * 140mM = 25200mEq
- Amount of sodium excreted by the kidney = 150 mM
- Percent reabsorbed = 25050 / 25200 = 99.4%

sodium homeostasis


- Three factors are principally involved in sodium homeostasis:
- 1. GFR,
- 2. Aldosterone,
- 3. Atrial natriuretic peptide.

Na⁺ & H₂O reabsorption occurs as the following :

Segment	Na ⁺⁰ /0	H ₂ O%
Proximal tubule	65%	65%
Descend (Henle)	-	15%
Ascending (Henle	25%	
Distal tubule	5%	10%
Collecting duct	4%	9%

$C_{Na+} = U_{Na+} / P_{Na+} x V$ = 100/140 x 1 = < 1 ml/min

about the curve :

1. the decrement in the flow rate (F.R) throughout the kidney tubules .

2. F.R remains relatively constant at the level of the ascending limb of Henle .

There are 2 ways to handle Na+ in the kidney : 1) Through filtration or 2) Reabsorption Ex: when Na⁺ intake $\uparrow \rightarrow \uparrow$ Na⁺ filtered $\rightarrow \uparrow$ reabsorption in the proximal...however, in distal tubule Na⁺reabsorption is decreased. This is called "glomerulotubular balance" to ensure that a constant fraction is reabsorbed (\approx 2/3) \rightarrow this occurs in the proximal tubules .

EARLY PROXIMAL CONVOLUTED TUBULE (S1) THICK ASCENDING LIMB (TAL) А в Lumen Interstitial Na⁺ H₂O 0 space Glucose К 🖌 Na 3 Nate 3Na* Na' 2 CI 5 2 K' 2 K H⁺ Carbonic Nat CITC anhydrase K⁺ H+ Na⁺ CA 3 HCO3 3 HCO3 CA H2O H20 CI CO2 H2O OH-CO2 Na⁺ H₂O OH-Na PCT H₂O Na⁺ Paracellular diffusion DCT TAL D PRINCIPAL CELL OF CONNECTING TUBULE (CNT) DISTAL CONVOLUTED TUBULE (DCT) OR CORTICAL COLLECTING TUBULE (CCT) С Lumen Interstitial CCT space Na Na* 3 Na⁺ Cľ • K* K* 3 Na*•. 2 K⁺ CLO = H20

Boron & Boulpaep: Medical Physiology, 2nd Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

A-Reabsorption in proximal tubules

- **There are 2 ways for Na transport through the cells:**
- 1. transcellular \rightarrow channels (T-max)
- 2. paracellular \rightarrow tight junction
- In the early proximal tubules, tight junctions are not so tight → paracellular route (+ transcellular route), so transport is NOT T-max dependent → it is gradient/time dependent.
- Conc → T time in prox. tubules → more chance to be reabsorbed.

Boron & Boulpaep: Medical Physiology, 2nd Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

A-Reabsorption in proximal tubules

- In the early part of the proximal tubule , Na⁺ & H₂O are reabsorbed with glucose & amino acids by "cotransport process".
- $\boxed{[Na+]_{out}} = 140 \text{ mEq}$
- $[Na+]_{in} = 14 \text{ mEq}$
- So Na+ moves down gradient from the luminal side to the cell, while it is pumped actively through the basolateral membrane (anti-gradient).

A-Reabsorption in proximal tubules

In the late proximal tubule , Na⁺ is reabsorbed with Cl- , because in the early prox.tub. , removal of large amounts of Na+ with glucose creates negativity inside the lumen. so to get back to normal , Cl- is reabsorbed. Na+ follows Cl- .

<u>B. Reabsorption in descending limb of</u> <u>Henle</u> (no reabsorption).

C. Reabsorption in the Ascending limb of <u>Henle.</u>

reabsorption involves (Na+_K+_2Cl-) cotransporter without H2O, this is called [single effect] → ↑ osmolarity in the interstitium, osmolarity in the lumen.

<u>Clinical point</u>

 Furesamide (Lazix): a potent loop diuretic acts on the thick ascending limb of Henle TAL where it inhibits Na-2Cl-K → ↑ Na Excretion.
 Indicated in pulmonary edema & hypertension.

2. Thiazide/Chlorothiazide (moderate diuretic) acts on distal convoluted tubule DCT inhibiting Na/Cl reabsorption

Those 2 diuretics are called [k+_ wasting diuretics]

Reabsorption of Na+

- D. Reabsorption in late distal tubules & cortical collecting duct.
- Reaborption of Na+ & secretion of K+ occur through the principal cells.

Clinical point

1. Spironolactone (aldactone): works on principal cells by decreasing K+ secretion \rightarrow Hypokalemia. aldactone diuretics are called [K+ sparing diuretics] or [aldosterone antagonists]. **2. Osmotic diuretics**, (ex: Mannitol) is a glomerular marker & has an osmotic effect i.e. it's not reabsorbed so it drives H2O with it, used in brain edema.

Control of Na⁺⁺

when Na+ intake → GFR by : ECV
BP
peritubular π
when ECV → ↓ π peritubular capillary due to dilution → ↓ Reabsorption.

Control of Na⁺⁺

- How does the body control Na+ intake ?
- 1. Altering GFR
- 2. Altering Reabsorption
- 1-Altering GFR:

When Na⁺ intake , Glomerulotubular feedback is not working for unknown reason
 → Na Excretion.
 Na intake → pressure → filtration & this is called (Pressure Natriuresis)

Control of Na

2-Altering reabsorption:

Macula densa suppresses "Angiotensin II " > **1.** reabsorption from Proximal <u>2. aldosterone \rightarrow reabsorption from distal</u> Aldosterone is autoregulated. Ex. \uparrow Na+ \rightarrow \square aldosterone (by itself). ANP (Atrial Natriuretic Peptide) increases due to \uparrow atrial pressure \rightarrow 1. Aff. Arterial dilatation. 2. inhibit adrenal cortex \rightarrow \downarrow aldosterone

K+ - Reabsorption

[K⁺] plasma = 4 mEq.
Too small as compared to [Na⁺] plasma= 140mEq.
K-balance :

- K intake=100 mEq/day

-K excretion=100 mEq/day→

(92-95) by kidneys the rest is removed by other routes

Renal Failure huperkalemia

Renal Failure does not cause hypernatrimea because when Na increases H₂O increases too thus Na+ remains relatively constant or slightly decreased.

K+ - Reabsorption

K Contributes to RMP so $\mathbf{k} \rightarrow \mathbf{k}$ hyperpolarization and cardiac arrest $\mathbf{k} \rightarrow \mathbf{k}$ increased exitability and arrhythmia. <u>60 mEq/L</u> * 1 ml/min $C_{k+} \equiv$ 4 mEq = 15 ml/minWhich is much more than C_{Na+}

Calcium		Increase Reabsorption	Decrease Reabsorption
Proximal	65%	Volume Contraction	Volume Expansion
TAL	25%	PTH, Clacitonin	Furosemide
DCT	8%	PTH VitD AVP (ADH) Alkalosis Thiazide	Phosphate depletion
Coll Ducts	1%	Amiloride	