

Acids and Bases

Dr. Diala Abu-Hassan, DDS, PhD
Dr.abuhassand@gmail.com
Lecture 1
MD summer 2014

Required material and further reading

Required:
Handout
Text books:
Biochemistry. Campbell Chapter 2
Fundamentals of General, Organic, and Biological Chemistry. McMurry. Chapter 10 softcopy will be sent

Outline

- Introduction- The Science of Biochemistry
- Definitions of acids and bases
- Acid and base strength
- The dissociation constant
- Conjugate pair strength
- Water dissociation

Biochemistry is the science concerned with studying the various molecules that occur in living cells and organisms and their chemical reactions.

Organelles: Nucleus, Mitochondria,
 Nucleus, Mitochondria, Chloroplasts, Endoplasmic

Chloroplasts, Endoplasmic
reticulum, Golgi apparatus,
Vacuole

Why Biochemistry is important to Human Biology?

1. Biochemistry is an intrinsically beautiful and fascinating body of knowledge. "Lubert Stryer"
Because it unravels the details of the most fundamental processes in biological systems.
2. Biochemistry massively influences medicine and treatment development, ex. sickle-cell anemia, cystic fibrosis, hemophilia, etc.
3. By advances in biochemistry, researchers can tackle many questions in biology and medicine, ex. Biochemical changes in diseases, causes of diseases, lab tests..etc.

Benefits of studying biological systems at the molecular and biochemical level

When we unravel the molecular and biochemical details of biological molecules:

1. Molecular and biochemical basis of diseases become clear.
2. Manipulate the biochemical processes and simulating them in vivo and in vitro.
3. Molecules of life can be prepared on the bench

What makes biomolecules special?

-The cellular apparatus of living organisms is made up of carbon compounds.

Different Definitions of Acids and Bases

- Arrhenius
- Bronsted-Lowry
- Lewis

Arrhenius Definition of Acids and Bases and Their Reactions

Arrhenius Acids and Bases Acids are

- Acids in $\mathrm{H}_{2} \mathrm{O}$ are H^{+}donors
- Bases in $\mathrm{H}_{2} \mathrm{O}$ are OH^{-}donors

Neutralization of acids and bases produces salt and water.

Arrhenius
 1903
 Nobel
 Prize

Drawbacks:

1. Reactions has to happen in aqueous solutions
2. $\mathrm{H}_{3} \mathrm{O}^{+}$is released but not H^{+}

Bronsted-Lowry Definition of Acids and Bases and Their Reactions

Bronsted-Lowry Acids and Bases (1923)

- Acids donate H^{+}
- Bases accept H^{+}(non-bonding pairs)

Conjugate acid-base pair
$\mathrm{B}:+\mathrm{H}-\mathrm{A} \rightleftarrows \mathrm{BH}^{+}+\mathrm{A}^{-}$
Base Acid Acid Base
Conjugate acid-base pair

Lewis Definition of Acids and Bases and Their Reactions

- Acids accept electrons
- Bases donate electrons (non-bonding pairs)
$\mathrm{BF}_{3}+: \mathrm{NH}_{3} \longrightarrow \mathrm{~F}_{3} \mathrm{~B} \cdots \cdots: \mathrm{NH}_{3}$
Acid base

Common Acids

- HCl- hydrochloric- stomach acid
- $\mathrm{H}_{2} \mathrm{SO}_{4}$ - sulfuric acid - car batteries
- HNO_{3} - nitric acid - explosives
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ - acetic acid - vinegar
- $\mathrm{H}_{2} \mathrm{CO}_{3}$-carbonic acid - sodas
- $\mathrm{H}_{3} \mathrm{PO}_{4}$ - phosphoric acid -flavorings

Common Bases

- NaOH - sodium hydroxide (LYE) soaps, drain cleaner
- $\mathrm{Mg}(\mathrm{OH})_{2}$ - magnesium hydroxide-antacids
- $\mathrm{Al}(\mathrm{OH})_{3}$-aluminum hydroxide-antacids, deodorants
- $\mathrm{NH}_{4} \mathrm{OH}$-ammonium hydroxide- "ammonia"

Water as both an acid and a base

$$
\begin{gathered}
\underset{\text { acid }}{\mathrm{CH}_{3} \mathrm{COO}}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}} \rightleftarrows \\
\begin{array}{c}
\mathrm{CH}_{3} \mathrm{COOH} \\
\text { acid }
\end{array}+\mathrm{OH}^{-} \\
\text {base }
\end{gathered}
$$

Strong acid + strong base \rightleftarrows weak base + weak acid

Amphoterism - an ion or molecule can act

 as an acid or base depending upon the reaction conditionsWater in NH_{3} serves as an acid
$\mathbf{H}_{2} \mathbf{O}+\mathbf{N H}_{3} \leftrightharpoons \mathbf{N H}_{4}{ }^{+}+\mathbf{O H}^{-}$
acid
base
acid

Water in acetic acid serves as a base

Measuring concentrations

Molarity: the number of moles in a liter of solution
Unit: Mole/Liter = M
$\mathrm{mM}=10^{-3} \mathrm{M}, \mathrm{uM}=10^{-6} \mathrm{M}$
Symbol: [X]
Concentration $=\frac{\text { Amount of solute }}{\text { Amount of solvent }}$
Dissolve 2 moles of glucose in 5 liters of $\mathrm{H}_{2} \mathrm{O}$. what is the concentration?
[Glucose] $=2 / 5=0.4 \mathrm{M}$

Acid and Base Strength

- Some acids can cause burns if come in contact with skin, other acids are safe. why?
- How easy can the acid produce proton
- Strong acid: gives up H^{+}easily (100\% dissociated in water)

$$
\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

- Weak acid: gives up H^{+}with difficulty (less than 100\% dissociated)
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

Acid dissociation constant, K_{a}

- The general ionization of an acid is as follows:

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

So the acid dissociation constant is as follows:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

$\left[\mathrm{H}_{2} \mathrm{O}\right]=55.5 \mathrm{M}$ and is constant in all equations

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Acid dissociation constant

- The general ionization of an acid is as follows:

So the acid dissociation constant is as follows:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]}
$$

There are many orders of magnitude spanned by K_{a} values, so pK_{a} is used instead:

$$
\mathrm{pK}_{\mathrm{a}}=\log 1 / \mathrm{K}_{\mathrm{a}}=-\log _{10} \mathrm{~K}_{\mathrm{a}}
$$

The larger the value of the pK_{a}, the smaller the extent of dissociation.

The equilibrium constant, Ka

$$
H A \leftrightarrow A^{-}+H^{+}
$$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Larger K_{a} means:
More dissociation
Smaller pK_{a}
Stronger acid

$\stackrel{\text { 등 }}{ }$	TABLE 8-2	Acidity Constants in Water at $25^{\circ} \mathrm{C}$			
	Acid	Formula	Conjugate Base	Ka	pK ${ }_{\text {a }}$
	Hydriodic	HI	I^{-}	$\approx 10^{11}$	≈-11
$\stackrel{\text { ¢ }}{0}$	Hydrobromic	HBr	Br^{-}	$\approx 10^{9}$	≈-9
0	Perchloric	HClO_{4}	ClO_{4}^{-}	$\approx 10^{7}$	≈-7
'ত্ত	Hydrochloric	HCl	Cl^{-}	$\approx 10^{7}$	≈-7
ט	Chloric	HClO_{3}	ClO_{3}^{-}	$\approx 10^{3}$	≈-3
\%	Sulfuric (1)	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	$\approx 10^{2}$	≈-2
O	Nitric	HNO_{3}	NO_{3}^{-}	≈ 20	≈-1.3
-	Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	1	0.0
	Urea acidium ion	$\left(\mathrm{NH}_{2}\right) \mathrm{CONH}_{3}^{+}$	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ (urea)	6.6×10^{-1}	0.18
$\underline{\square}$	Iodic	HIO_{3}	IO_{3}^{-}	1.6×10^{-1}	0.80
$\begin{aligned} & \bar{\nabla} \\ & \hline \mathbf{T} \end{aligned}$	Oxalic (1)	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	5.9×10^{-2}	1.23
흔	Sulfurous (1)	$\mathrm{H}_{2} \mathrm{SO}_{3}$	HSO_{3}^{-}	1.5×10^{-2}	1.82
O	Sulfuric (2)	HSO_{4}^{-}	SO_{4}^{2-}	1.2×10^{-2}	1.92
-	Chlorous	HClO_{2}	ClO_{2}^{-}	1.1×10^{-2}	1.96
\%	Phosphoric (1)	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	7.5×10^{-3}	2.12
$\begin{aligned} & \mathbb{Z} \\ & \underset{\sim}{2} \end{aligned}$	Arsenic (1)	$\mathrm{H}_{3} \mathrm{AsO}_{4}$	$\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$	5.0×10^{-3}	2.30
$\frac{\grave{U}}{0}$	Chloroacetic	$\mathrm{ClCH}_{2} \mathrm{COOH}$	$\mathrm{ClCH}_{2} \mathrm{COO}^{-}$	1.4×10^{-3}	2.85
-	Hydrofluoric	HF	F^{-}	6.6×10^{-4}	3.18
	Nitrous	HNO_{2}	NO_{2}^{-}	4.6×10^{-4}	3.34
\checkmark	Formic	HCOOH	HCOO^{-}	1.8×10^{-4}	3.74

Acid dissociation constant

Acid Dissociation Constants and $\mathrm{p} K_{\mathrm{a}}$ Values for Some Weak Electrolytes (at $25^{\circ} \mathrm{C}$)		
Acid	$K_{\text {a }}(M)$	$\mathrm{p} K_{\mathrm{a}}$
HCOOH (formic acid)	1.78×10^{-4}	3.75
$\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)	1.74×10^{-5}	4.76
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ (propionic acid)	1.35×10^{-5}	4.87
$\mathrm{CH}_{3} \mathrm{CHOHCOOH}$ (lactic acid)	1.38×10^{-4}	3.86
$\mathrm{HOOCCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ (succinic acid) $\mathrm{p} K_{1}{ }^{*}$	6.16×10^{-5}	4.21
$\mathrm{HOOCCH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}$(succinic acid) P_{2}	2.34×10^{-6}	5.63
$\mathrm{H}_{3} \mathrm{PO}_{4}$ (phosphoric acid) $\mathrm{p} K_{1}$	7.08×10^{-3}	2.15
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$(phosphoric acid) $\mathrm{p} K_{2}$	6.31×10^{-8}	7.20
$\mathrm{HPO}_{4}{ }^{2-}$ (phosphoric acid) $\mathrm{p} K_{3}$	3.98×10^{-13}	12.40
$\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{5}^{+}$(imidazole)	1.02×10^{-7}	6.99
$\mathrm{C}_{6} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{H}_{11}^{+}$(histidine-imidazole group) $\mathrm{P} K_{\mathrm{R}}{ }^{+}$	9.12×10^{-7}	6.04
$\mathrm{H}_{2} \mathrm{CO}_{3}$ (carbonic acid) $\mathrm{p} K_{1}$	1.70×10^{-4}	3.77
$\mathrm{HCO}_{3}{ }^{-}$(bicarbonate) $\mathrm{p} K_{2}$	5.75×10^{-11}	10.24
$\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}{ }^{+}$(tris-hydroxymethyl aminomethane)	8.32×10^{-9}	8.07
NH_{4}^{+}(ammonium)	5.62×10^{-10}	9.25
$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$(methylammonium)	2.46×10^{-11}	10.62

[^0]
Base dissociation constant

$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{BH}^{+}+\mathrm{OH}^{-}$

$\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{BH}+]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}$

Reverse the reaction:

$\mathrm{BH}^{+} \rightleftarrows \mathrm{B}+\mathrm{H}^{+}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{B}]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{BH}^{+}\right]}
$$

Weak Bases

TABLE 7.3 Values of K_{b} for Some Common Weak Bases

Name	Conjugate Acid		
Ammonia	NH_{3}	$\mathrm{NH}_{4}{ }^{+}$	K_{b}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	1.8×10^{-5}
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	4.38×10^{-4}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	5.6×10^{-4}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	3.8×10^{-10}
			1.7×10^{-9}

Strong Acids

- Dissociate readily
- Ka is very large
- Examples: Hydrochloric, Nitric; Sulfuric

Ex. $\quad \mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$

$$
\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{Cl}^{-}\right]}{[\mathrm{HCl}]}
$$

$$
\left[\mathrm{H}^{+}\right]=[\text {acid }]
$$

Ex. 1 M solution of HCl has $\mathrm{a}\left[\mathrm{H}^{+}\right]$of 1 M
1 mM HCl solution has $\mathrm{a}\left[\mathrm{H}^{+}\right]$of 1 mM
$0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution has a $\left[\mathrm{H}^{+}\right]$of 0.2 M

Weak Acids

- Dissociate slightly
- Ka is smaller than strong acids
- Examples: Acetic, Boric, Nitrous, Phosphoric, Sulfurous

Ex. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

$$
\mathrm{Ka}=\frac{[\mathrm{H}+]\left[\mathrm{CH}_{3} \mathrm{COO}-\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

What is the $\mathrm{H}+$ of a 0.1 M solution of acetic acid?
$\mathrm{Ka}=1.74 \times 10^{-5}$
$1.74 \times 10^{-5}=x^{2} /[0.1-x]$
$x^{2}=1.74 \times 10^{-6}$, or $x=1.32 \times 10^{-3} \mathrm{M}$

Conjugate pair strength

$$
\begin{aligned}
& \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ Weak acid weak base strong base strong acid
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
Stronger acid strong base

weak base weak acid

Strong acid + strong base \longleftrightarrow Weak base + Weak acid

Equilibrium constant and the pH of water

$\mathrm{H}_{2} \mathrm{O}$ dissociates to a slight extent to form hydrogen $\left(\mathrm{H}^{+}\right)$and hydroxyl (OH^{-}) ions.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& K_{\text {eq }}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& K_{\text {eq }}=\frac{\left(10^{-7}\right)\left(10^{-7}\right)}{55.5}=1.8 \times 10^{-16}
\end{aligned}
$$

Because the concentration of $\mathrm{H}_{2} \mathrm{O}$ in pure water is essentially constant, a new constant, $\boldsymbol{K}_{\mathrm{w}}$, the ion product of water, can be written as

$$
K_{\mathrm{w}}=55.5 K_{\mathrm{eq}}=10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$[\mathrm{H}+]$ of pure water is only 0.0000001 M

Dissociation of water

- $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$

Example: A solution has an $\left[\mathrm{OH}^{-}\right]=10^{-9} \mathrm{M}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-5} \mathrm{M}
$$

Problem solving

Example:

What is the $\left[\mathrm{H}^{+}\right]$of a 0.01 M NaOH solution?
$\mathrm{Kw}=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right] \times 10^{-2}=10^{-14}$
$\left[\mathrm{H}^{+}\right]=10^{-12} \mathrm{M}$
Example:
What is the $\left[\mathrm{OH}^{-}\right]$of a $0.01 \mathrm{M} \mathrm{HCl}^{2}$ solution?
$\mathrm{Kw}=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=10^{-2} \times\left[\mathrm{OH}^{-}\right]=10^{-14}$
$\left[\mathrm{OH}^{-}\right]=10^{-12} \mathrm{M}$

Example:

Find the K_{a} of a 0.04 M weak acid HA whose $\left[\mathrm{H}^{+}\right]$is 1×10^{-4} ?

```
HA \rightleftarrows}\mp@subsup{\textrm{H}}{}{+}+\mp@subsup{\textrm{A}}{}{-
```

$$
\mathrm{K}_{\mathrm{a}}=\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right] /[\mathrm{HA}]=\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HA}]=10^{-4} \times 10^{-4} / 0.04=2.5 \times 10^{-7}
$$

Example 2:

What is the $\left[\mathrm{H}^{+}\right]$of a $0.05 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?

$$
\mathrm{Ba}(\mathrm{OH})_{2} \rightleftarrows \mathrm{Ba}+2 \mathrm{OH}^{-}
$$

$$
\left[\mathrm{OH}^{-}\right]=2 \times 0.05=0.10 \mathrm{M}=1 \times 10^{-1}
$$

$$
\left[\mathrm{H}^{+}\right]=1 \times 10^{-13}
$$

Example 4:

The $\left[\mathrm{H}^{+}\right]$of a 0.03 M weak base solution is $1 \times 10^{-10} \mathrm{M}$. Calculate pKb?

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{BH}^{+}+\mathrm{OH}^{-}
$$

$\left[\mathrm{OH}^{-}\right]=10^{-4}$
$K_{b}=\left(10^{-4} \times 10^{-4}\right) / 0.03=3.33 \times 10^{-7} \mathrm{M}$
$\mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}=6.48$

[^0]: *These $\mathrm{p} K$ values listed as $\mathrm{p} K_{1}, \mathrm{p} K_{2}$, or $\mathrm{p} K_{3}$ are in actuality $\mathrm{p} K_{\mathrm{a}}$ values for the respective dissociations. This simplification in notation is used throughout this book.
 ${ }^{+} \mathrm{p} K_{\mathrm{R}}$ refers to the imidazole ionization of histidine.
 Data from CRC Handbook of Biochemistry, The Chemical Rubber Co., 1968.

