

Acids and Bases

Dr. Diala Abu-Hassan, DDS, PhD Dr.abuhassand@gmail.com Lecture 1 MD summer 2014

Dr. Diala Abu-Hassan

Required material and further reading

Required:

Handout

Text books:

Biochemistry. Campbell Chapter 2

Fundamentals of General, Organic, and Biological Chemistry. McMurry. Chapter 10 softcopy will be sent

Outline

- Introduction- The Science of Biochemistry
- Definitions of acids and bases
- Acid and base strength
- The dissociation constant
- Conjugate pair strength
- Water dissociation

The inorganic precursors: (18–64 daltons) Carbon dioxide, Water, Ammonia, Nitrogen(N₂), Nitrate(NO₃⁻)

What is Biochemistry?

Carbon dioxide

Metabolites: (50–250 daltons) Pyruvate, Citrate, Succinate, Glyceraldehyde-3-phosphate, Fructose-1,6-bisphosphate, 3-Phosphoglyceric acid

Building blocks: (100–350 daltons) Amino acids, Nucleotides, Monosaccharides, Fatty acids, Glycerol

Macromolecules: (10³–10⁹ daltons) Proteins, Nucleic acids, Polysaccharides, Lipids

```
Protein
```

Supramolecular complexes: (10⁶-10⁹ daltons) Ribosomes, Cytoskeleton, Multi-enzyme complexes

The cell

Biochemistry is the science concerned with studying the various molecules that occur in living cells and organisms and their chemical reactions.

Dr. Diala Abu-Hassan

Organelles: Nucleus, Mitochondria, Chloroplasts, Endoplasmic reticulum, Golgi apparatus, Vacuole

Why Biochemistry is important to Human Biology?

1. Biochemistry is an intrinsically beautiful and fascinating body of knowledge. "Lubert Stryer" Because it unravels the details of the most fundamental processes in biological systems.

2. Biochemistry massively influences medicine and treatment development, ex. sickle-cell anemia, cystic fibrosis, hemophilia, etc.

3. By advances in biochemistry, researchers can tackle many questions in biology and medicine, ex. Biochemical changes in diseases, causes of diseases, lab tests..etc.

Benefits of studying biological systems at the molecular and biochemical level

When we unravel the molecular and biochemical details of biological molecules:

- 1. Molecular and biochemical basis of diseases become clear.
- 2. Manipulate the biochemical processes and simulating them in vivo and in vitro.
- 3. Molecules of life can be prepared on the bench

What makes biomolecules special?

Class of	General	Characteristic	Name of	
Compound	Structure	Functional Group	Functional Group	Example
Alkenes	RCH=CH ₂			
	RCH=CHR			
	$R_2C = CHR$	C=C	Double bond	CH ₂ =CH ₂
	$R_2C = CR_2$			
Alcohols	ROH	-он	Hydroxyl group	CH ₃ CH ₂ OH
Ethers	ROR	-0-	Ether group	CH ₃ OCH ₃
Amines	RNH _z			
	R ₂ NH	-N		
	R ₃ N		Amino group	CH ₃ NH ₂
Thiols	RSH	-SH	Sulfhydryl group	CH,SH
	Ŷ	Ŷ		Ŷ
Aldehydes	R-C-H	— <u>c</u> —	Carbonyl group	CH ₃ CH
	O.	o		O.
Ketones	R-C-R		Carbonyl group	CH,C CH,
		0	Carbonyi group	O O
Carboxylic	Ĭ	Ĭ		Ĭ
acids	R—C—OH	-C-OH	Carboxyl group	CH,C OH
	0	P		Q
Esters	R-C-OR	-C-OR	Ester group	CH,C OCH,
	0	0	Later Broup	0
	Ĭ	N<		Ĭ
Amides	R-C-NR _z	— <u> </u>	Amide group	CH ₃ C N(CH ₃) ₂
	0			
	R-C-NHR			
	0			
	Ĭ			
	R-C-NH ₂			
	O.	Q		Q
Phosphoric acid	R-0-P-0H	_о_р_он	Phosphoric ester	CH, -O-P-O
esters			group	carg O I C
	ÓН	ÓН	9.out	ÓH
Phosphoric acid	<u> </u>	e e		<mark>ଦ ଦ</mark>
anhydrides	R—0—P—0—P—0H	POP	Phosphoric	но-р-о-р-о

-The cellular apparatus of living organisms is made up of carbon compounds.

Different Definitions of Acids and Bases

- Arrhenius
- Bronsted-Lowry
- Lewis

Arrhenius Definition of Acids and Bases and Their Reactions

Arrhenius Acids and Bases Acids are

- Acids in H_2O are H^+ donors
- Bases in H_2O are OH^- donors

Neutralization of acids and bases produces salt and water.

NaOH
$$\xrightarrow{H_2O}$$
 Na⁺ + OH⁻
HCL $\xrightarrow{H_2O}$ Cl⁻ + H⁺
H⁺ + H- Ö: \longrightarrow H₃O⁺
H

Drawbacks:

- 1. Reactions has to happen in aqueous solutions
- 2. H_3O^+ is released but not H^+

Bronsted-Lowry Definition of Acids and Bases and Their Reactions

Bronsted-Lowry Acids and Bases (1923)

- Acids donate H⁺
- Bases accept H⁺ (non-bonding pairs)

Conjugate acid-base pair

Lewis Definition of Acids and Bases and Their Reactions

- Acids accept electrons
- Bases donate electrons (non-bonding pairs)

Common Acids

- HCI- hydrochloric- stomach acid
- H₂SO₄- sulfuric acid car batteries
- HNO₃ nitric acid explosives
- HC₂H₃O₂- acetic acid vinegar
- H₂CO₃-carbonic acid sodas
- H₃PO₄- phosphoric acid -flavorings

Common Bases

- NaOH- sodium hydroxide (LYE) soaps, drain cleaner
- Mg (OH)₂ magnesium hydroxide-antacids
- Al(OH)₃-aluminum hydroxide-antacids, deodorants
- NH₄OH-ammonium hydroxide- "ammonia"

Dr. Diala Abu-Hassan

Water as both an acid and a base

<u>Amphoterism</u> - an ion or molecule can act as an acid or base depending upon the reaction conditions

Water in NH_3 serves as an acid $H_2O + NH_3 \iff NH_4^+ + OH^-$ acidbaseacidbase

Water in acetic acid serves as a base

Measuring concentrations

Molarity: the number of moles in a liter of solution

Unit: Mole/Liter = M

```
mM = 10^{-3} M, uM = 10^{-6} M
```

```
Symbol: [X]
```

```
Concentration = \frac{Amount of solute}{Amount of solvent}
```

Dissolve 2 moles of glucose in 5 liters of H₂0. what is the concentration?

[Glucose] = 2/5 = 0.4 M

Acid and Base Strength

- Some acids can cause burns if come in contact with skin, other acids are safe. why?
- How easy can the acid produce proton
 - Strong acid: gives up H⁺ easily (100% dissociated in water)

HCI \longrightarrow H⁺ + CI⁻

Weak acid: gives up H⁺ with difficulty (less than 100% dissociated)

 $CH_3COOH \longrightarrow H^+ + CH_3COO^-$

Acid dissociation constant, K_a

$$HA + H_2O \longleftrightarrow H_3O^+ + A^-$$

So the acid dissociation constant is as follows:

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA][H_{2}O]}$$

 $[H_2O] = 55.5$ M and is constant in all equations

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

Acid dissociation constant

– The general ionization of an acid is as follows:

 $HA \longleftrightarrow H^+ + A^-$

So the acid dissociation constant is as follows:

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

There are many orders of magnitude spanned by K_a values, so pK_a is used instead:

$$pK_a = \log 1/K_a = -\log_{10} K_a$$

The larger the value of the pK_a , the smaller the extent of dissociation.

The equilibrium constant, Ka

$$K_{\rm a} = \frac{[\rm H^+][\rm A^-]}{[\rm HA]}$$

Larger K_a means: More dissociation Smaller pK_a Stronger acid

TABLE 8-2	Acidity	/ Constants in W	/ater at 25°C	
Acid	Formula	Conjugate Base	Ka	рК _а
Hydriodic	HI	I ⁻	$\approx 10^{11}$	≈ -11
Hydrobromic	HBr	Br ⁻	$\approx 10^9$	≈ -9
Perchloric	HClO ₄	ClO_4^-	$\approx 10^7$	≈ -7
Hydrochloric	HCl	Cl ⁻	$\approx 10^7$	\approx -7
Chloric	HClO ₃	ClO_3^-	$\approx 10^3$	≈ -3
Sulfuric (1)	H_2SO_4	HSO_4^-	$\approx 10^2$	≈ -2
Nitric	HNO ₃	NO_3^-	≈ 20	≈ -1.3
Hydronium ion	H_3O^+	H ₂ O	1	0.0
Urea acidium ion	$(NH_2)CONH_3^+$	(NH ₂) ₂ CO (urea)	6.6×10^{-1}	0.18
Iodic	HIO ₃	IO_3^-	1.6×10^{-1}	0.80
Oxalic (1)	$H_2C_2O_4$	$HC_2O_4^-$	5.9×10^{-2}	1.23
Sulfurous (1)	H_2SO_3	HSO_3^-	1.5×10^{-2}	1.82
Sulfuric (2)	HSO_4^-	SO_4^{2-}	1.2×10^{-2}	1.92
Chlorous	HClO ₂	ClO_2^-	1.1×10^{-2}	1.96
Phosphoric (1)	H_3PO_4	$H_2PO_4^-$	7.5×10^{-3}	2.12
Arsenic (1)	H ₃ AsO ₄	$H_2AsO_4^-$	5.0×10^{-3}	2.30
Chloroacetic	CICH ₂ COOH	$ClCH_2COO^-$	1.4×10^{-3}	2.85
Hydrofluoric	HF	F^-	6.6×10^{-4}	3.18
Nitrous	HNO ₂	NO_2^-	4.6×10^{-4}	3.34
Formic	НСООН	HCOO ⁻	$1.8 imes 10^{-4}$	3.74

© 2003 Thomson - Brooks/Cole

Dr. Diala Abu-Hassan

Increase acid strength

Decrease acid strength

Acid dissociation constant

Acid Dissociation Constants and pK_a Values for Some Weak Electrolytes (at 25°C)		
Acid	$K_{\rm a}~(M)$	р <i>К</i> а
HCOOH (formic acid)	$1.78 imes10^{-4}$	3.75
CH ₃ COOH (acetic acid)	$1.74 imes10^{-5}$	4.76
CH ₃ CH ₂ COOH (propionic acid)	$1.35 imes10^{-5}$	4.87
CH ₃ CHOHCOOH (lactic acid)	$1.38 imes 10^{-4}$	3.86
HOOCCH ₂ CH ₂ COOH (succinic acid) pK_1^*	$6.16 imes10^{-5}$	4.21
HOOCCH ₂ CH ₂ COO ⁻ (succinic acid) pK ₂	$2.34 imes10^{-6}$	5.63
H_3PO_4 (phosphoric acid) pK_1	$7.08 imes10^{-3}$	2.15
$H_2PO_4^-$ (phosphoric acid) pK_2	$6.31 imes10^{-8}$	7.20
HPO_4^{2-} (phosphoric acid) pK_3	$3.98 imes10^{-13}$	12.40
$C_3N_2H_5^+$ (imidazole)	$1.02 imes10^{-7}$	6.99
$C_6O_2N_3H_{11}^+$ (histidine–imidazole group) pK_R^\dagger	$9.12 imes10^{-7}$	6.04
H_2CO_3 (carbonic acid) pK_1	$1.70 imes10^{-4}$	3.77
HCO_3^- (bicarbonate) pK_2	$5.75 imes 10^{-11}$	10.24
(HOCH ₂) ₃ CNH ₃ ⁺ (tris-hydroxymethyl aminomethane)	$8.32 imes 10^{-9}$	8.07
NH4 ⁺ (ammonium)	$5.62 imes10^{-10}$	9.25
CH ₃ NH ₃ ⁺ (methylammonium)	2.46×10^{-11}	10.62

*These pK values listed as pK_1 , pK_2 , or pK_3 are in actuality pK_a values for the respective dissociations. This simplification in notation is used throughout this book.

 ${}^{\dagger}pK_{R}$ refers to the imidazole ionization of histidine.

Data from CRC Handbook of Biochemistry, The Chemical Rubber Co., 1968.

Base dissociation constant

$$K_{b} = \frac{[BH+][OH^{-}]}{[B]}$$

Reverse the reaction:

$$BH^+ \xrightarrow{} B + H^+$$

$$K_a = \frac{[B][H^+]}{[BH^+]}$$

Weak Bases

ABLE 7.3 Values of	of $K_{\rm b}$ for Some Comm	on Weak Bases	
Name	Formula	Conjugate Acid	$K_{ m b}$
Ammonia	NH ₃	NH_4^+	$1.8 imes 10^{-5}$
Methylamine	CH_3NH_2	$CH_3NH_3^+$	4.38×10^{-4}
Ethylamine	$C_2H_5NH_2$	$C_2H_5NH_3^+$	5.6×10^{-4}
Aniline	$C_6H_5NH_2$	$C_6H_5NH_3^+$	3.8×10^{-10}
Pyridine	C ₅ H ₅ N	C ₅ H ₅ NH ⁺	1.7×10^{-9}

Strong Acids

- Dissociate readily
- Ka is very large
- Examples: Hydrochloric, Nitric; Sulfuric

Ex.
$$HCI \rightarrow H^+ + CI^-$$

Ex.1 M solution of HCI has a [H⁺] of 1 M 1 mM HCI solution has a [H⁺] of 1 mM 0.1 M H₂SO₄ solution has a [H⁺] of 0.2 M

Weak Acids

- Dissociate slightly
- Ka is smaller than strong acids
- Examples: Acetic, Boric, Nitrous, Phosphoric, Sulfurous
- Ex. $CH_3COOH + H_2O \iff CH_3COO^- + H_3O^+$ $Ka = [H+][CH_3COO^-]$ $[CH_3COOH]$

What is the H+ of a 0.1 M solution of acetic acid? Ka= 1.74×10^{-5}

 $1.74 \times 10^{-5} = x^2/[0.1 - x]$

 $x^2 = 1.74 X 10^{-6}$, or $x = 1.32 X 10^{-3} M$

Equilibrium constant and the pH of water

 H_2O dissociates to a slight extent to form hydrogen (H⁺) and hydroxyl (OH⁻) ions.

$$H_2O \longrightarrow H^+ + OH^-$$

 $K_{eq} = \frac{[H^+][OH^-]}{[H_2O]}$
 $K_{eq} = \frac{(10^{-7})(10^{-7})}{55.5} = 1.8 \times 10^{-16}$

Because the concentration of H_2O in pure water is essentially constant, a new constant, K_w , the ion product of water, can be written as

$$K_{\rm w} = 55.5 \ K_{\rm eq} = 10^{-14} = [{\rm H^+}][{\rm OH^-}]$$

[H+] of pure water is only 0.0000001 M

Dissociation of water

• $K_w = [H^+] [OH^-] = 10^{-14}$

Example: A solution has an $[OH^{-}] = 10^{-9} M$

$$[H_3O^+] = 10^{-5} M$$

Problem solving

Example:

```
What is the [H<sup>+</sup>] of a 0.01 M NaOH solution?
```

```
Kw = [H^+] \times [OH^-] = [H^+] \times 10^{-2} = 10^{-14}
[H^+] = 10^{-12} M
```

Example:

What is the [OH⁻] of a 0.01 M HCl solution?

```
Kw = [H^+] \times [OH^-] = 10^{-2} \times [OH^-] = 10^{-14}
```

```
[OH^{-}] = 10^{-12} M
```

Example:

Find the K_a of a 0.04 M weak acid HA whose [H⁺] is 1 x 10^{-4} ?

HA \longrightarrow H⁺ + A⁻

 $K_a = [A^-] [H^+] / [HA] = [H^+]^2 / [HA] = 10^{-4} \times 10^{-4} / 0.04 = 2.5 \times 10^{-7}$

Example 2:

What is the $[H^+]$ of a 0.05 M Ba $(OH)_2$?

 $Ba(OH)_2 \longrightarrow Ba + 2OH^2$

 $[OH^{-}] = 2x \ 0.05 = 0.10 \ M = 1 \ x \ 10^{-1}$

 $[H^+] = 1 \times 10^{-13}$

Example 4:

The [H⁺] of a 0.03 M weak base solution is 1 x 10^{-10} M. Calculate pKb?

$$B + H_2O \longrightarrow BH^+ + OH^-$$

 $[OH^{-}] = 10^{-4}$ $K_{b} = (10^{-4} \times 10^{-4}) / 0.03 = 3.33 \times 10^{-7} M$

 $pK_{b} = -log K_{b} = 6.48$