

Figure 1-3. Regions of the mature central nervous system, as seen in sagittal section. ($\times 0.5$; photograph kindly provided by Dr. D. G. Montemurro.)
Developmentally
BRAIN is formed of 3 major parts:
(1) Forebrain (Prosencephalon) Telencephalon (2 cerebral)

Diencephalon:
\rightarrow Thalamus, hypothalamus
(2) Midbrain (mesencephalon) Subtholamus
(3) hind brain (Rhombencephalon)
myelencephalon (medulla oblongata) metencephalon
(a)

(b)
(c)

Fig. 1.3 Diagrams of stages in the differentiation of cerebral vesicles and the ventricular system.
deveref from the costal Csuperior) part findornin of the Neural tube \rightarrow the cavities of these vesicles become the ventricular system of the adult brain an follows:-
(1) The cavity of the telencephition (each cerebral hemisphere) will form the LATERAL VENTRICRE
(2) The cavity of the diencephalon (thalamus ind hypothalamus) is the Third Venvicle
(3) The cavity of the mesenceptulon (midbrain) remains a narrow canal called the CEREBRAL AQUEDUCT
(4) the cavity of the rhombencephalon (hindbrain) will form the Fourth Ventricle (a cavity bounded by the cerebellum, pons and medulla. - (longata)

OB Sustami

Mig. 21-1. Formation of neural tube.

NEURAL TUBE FORMATION

I. At the beginning of the third week, under the inductive influ enice of the notochord, the dorsal ectoderm thickens in the midline to form the neural plate (Fig. 21-1).
II. Due to the changes in the shape and size of the neural epithelial cells and the changes in their contrections with surrounding cells, the lateral margins of the plate become elevated to form the neural folds.
1II. The depression between these folds is known as netural groove.
IV. At about the 25 th day the neural folds puse to form the neural tube. The fusion begins at the fourth somite and progresses rostrally and caudally.
V. For a short time the neural tube remains open at both ends as the rostral and caudal neuropores (Fig. 21-2).
VI. The rostral neuropore closes at about the 25th day, and two days later the caudal neuropore closes.
VII Some cells at the margin of neural fodd do not incorporate into the neural tube, and thus formithe nearal crest.
Y(IXI The neural lube detaches itself from the ectoderm and sinks into the underlying mesoderm.

Figure 5-4. A, Dorsal view of a human embryo at approximately day 22. (Modified after Payne.) Seven distinct somites are visible on each side of the neural tube. B, Dorsal view of a human embryo at approximately day 23. (Modified after Corner.) Note the pericardia! bulge on each side of the midline in the cephalic part of the embryo.

Figure 20-31. A, Photograph of anencephalic child. Ventral view. This abnormality is frequently seen (1:1000 births). Usually the child dies a few days after birth. (Courtesy Dr.). Warkany. From Warkany f: Congenital Malformations. Chicago, Year Book Medical Publishers, 1971. Used by permission.) B. Dorsal view of an anencephalic child with spine bifida in cervical and thoracic segments.
Anencephiluss \rightarrow failure of the cephalic part of the neural rube anterior neuropore) to close. At birth \rightarrow the valet of the scull is absent the brain is represented by a mass of degenerated tissue exposed to the surface often \rightarrow richischisis (open spinal cord) in the cervical region + the neck in \rightarrow the last 2 months of Pregnancy the characterized by ty d dramniss $\$$ thigh level of α-tetoprotein (AFP)

FIG. 12-38 Varities of closure defects of the spinal cord and vertebral column. A, Rachischisis. B. Spina bifida occulta, with hair growth over the defect. C, Meningocele. D, Myelomeningocele.

Other Closura Dofects

A defect in the formation of the bony covering overlying, either the spinal cord or brain can result in a graded series of structural anomalics. In the spinal cord, the simplest dcfect is called spina bilida occulta (Fig. 12-38, B). The spi-
nal cord and meninges remain in place, but the bony covering (neural arch) of one or more vertebrae is incomplete. Sometimes the defect goes unnoticed for many ycat́s. The site of the defect is often marked by a tuft of hair. The next most sevare category of defect is a meningocele, in which the dura mater may be missing in the area of the defect and the arachnoid layer bulges prominenlly bencath the skin (Fig. 12-38, C). The spinal cord, however, remains in place, and neurological symptoms are often minor, The most severe condition is a myelomeningocele, in which the spinal cord bulges or is entirely displaced into the protruding suburdichnoid space (Figs. 12-38, D and 12-39). Because of piroblems associated with displaced spinal roots, neurological problems are commonly associated with this condition.

FIG. 12-39 Infant with a myelomeningocele and

FIG. 12-37 Fetus with a severe case of rachischisis. The brain is not covered by cranial bones, and the light-colored spinal cord is totally exposed (Courtesy Mason Barr, Ann Arbor, Mich.)

A number of the closure defects ear be diannessed by the detection of elevated levels of ntpha-feloprotelm in the amnoetic fluid or by ultrasound scanning.

Defects in Closure of the Neural Tube

Paturesfelosure of the neural tube one res post commonly in the lesions of dee anterior and posterior neuropore but other locations ate also possible. In this condition tic apinat cord or brain in the affected area is splayed open, with the wall of the central canal or ventricular system constitoting the outer surface. A closure defect of the spinal cord is called rachischisis and, in the brain, cranioschisis. Orawiosclisis is lnconupatible with life. Rachischisis (fig. 1237) is itssocialed with a wide variety of severe problems. including claconic infection, muter and sensory deficits, and dislurbalices in bladder function. These defects commonly accompany anencephaly (see Fig. 8-4), in which there is a massive deficiency of cranial structures.

Myelination in the Spinal Cord

In the spinal cord the nerve filers are heavily myelinated or slightly myelinated. The myelin sheath is formed and maintained by the oligodendrocytes of the neuroglia. The cervical portion of the cord is the first part to develop myelin, and from here the process extends caudally. The fibers of the anterior nerve roots are myelinated before those of the posterior nerve roots. The process of myelinetion begins within the cord at about the fourth month, and the sensory fibers are affected first. The descending motor fibers are the last to myclinate, which process docs not begin until term; it continues during the first 2 years of postnatal life.

Myelination in the Brain and the Onset of Function

Myelination in the brain begins at about the sixth month of fetal life but is restricted to the fibers of the basal ganglia. Later the sensory fibers passing up from the spinal cord myclinate, but the progress is slow so that at birth the brain is still largely unmyelinated. In the newborn there is very little cerebral function; motor reactions such as respiration, sucking, and swallowing are essentially reflex. After birth the corticobulbar, corticospinal fibers, and the tectospinal and corticopontocerebellar fibers begin to myclinate. This process of myelination is not haphazard but systematic, occurring in different nerve fibers at specific times. The corticospinal fibers, for example, start to myelinate at about 6 months after birth, and the process is largely com- believed that some nerve fibers in the brain and spinal cord do not complete myelination until puberty.

A similar spectrum of anomalies is associated with eraneal defects (Figs. 17-40 and 12-41). A meningocele is typically associated with a small defect in the skull, whereas brain tissue atone (meningoencephatocele) or brain tissue containing part of the ventricular system (meningohydroencephalocoele) may protrude through a larger opening in the skull. Depending on the nature of the protruding tissue, these malformations may be associated with neurological deficits. The mechanical circtunstunces may also lead to secondary hydrocephalus in sente cases.

Microcephaly is a relatively uncommon condition characterized by underdevelopment of both the brain and the cranium (see Fig. 10-9). Although it can result from promature closure of the cranial sutures, in most cases its tiology is uncertain.

Many of the functional defects of the nervous system are poorly characterized, and their etiology is not understood. Studies on mice with genetically based defects of movemont or behavior due to abnormalities of cell migration or histogenesis in certain regions of the brain suggest there is likely a parallel spectrum of human defects. Mental reardation is common and can be attributed to many causes, both genetic and environmental. The timing of the insult to the brain may be late in the fetal period.

FIG. 12-41 Fetuses with (A) an occipital meningocele and (B) a frontal encephalocele.
(Courtesy Mason Barr, Ann Arbor, Mich.)

Fig. 48 The gyri of the ateral surface of the cerebral hemispliere.
$\begin{gathered}\text { Precentral gyrus } \\ \text { (Brontal } \\ \text { lobe) }\end{gathered}=$ ared $4=$ Primary motor cortex

$$
\underset{\text { Premotor cortex }}{\text { (frontal lole) }} \text { lea } 6
$$

(brontal lote)
Supplementivy notor cuea $(S M A)=$ medial extension of arei 6 Postcentral gyrus $=$ duea $3,1,2=$ Somatic sensny cortex (parietal lobe) Somasthefic cortex

Figure 13-5. Gyri and sulci on the nedial and inferior surfaces of the right cerebral hemisphere. (A) Uncus. (B) Isthmus (retrosplenial cortex) connecting the cingulate and parahippocampal gyri. $(\times 0.63)$

Fig. 53 The gyri of the medial surface of the cerebral hemisphere (The different parts of the limbic lobe are shaded)

Figure 6-1. Ventral aspect of the brain stem.
(IICranial nerves with literal attachment

* The trigeminal nerve (the longest of the cranial nerves) attached to the junction of the pons with the middle cerchellder peduncle and consists of 2 roots $<\dot{a}$ langer posterolatenal sensay root(708) a miller anteroposterich motor roc * Facial \& vestibulocochlear nerve \rightarrow These 2 nerves with the small nerves intermedius inbetween emerge on the inferior borden ab the pons posterior to the olive N. B the facial nerve is motors white of o nerves intermedius carries its sensor and tarasymprthebi fores (9,10,1) ${ }^{\text {It }}$ lien anterior to the vestibulocochlecn neime

Glossophangngeal, vagus a accessory nerves, \rightarrow There nerves arise an a vertical series of rootlets from a groove rostetid to the olive in the medulla oblongrita
(xx) Cranial nerve with dovsil ettrichment \rightarrow Trochleu nerve
che

Fig. 7.3 Median sagittal section of the cercbellumand brainstem.

- The contents of each part of the frainstem \leqslant ?
\rightarrow Ascending and descending tracts
\rightarrow nuclei of certain cranial nerves
$3+4 \rightarrow$ in midbrain
$5,6,7,8 \rightarrow$ in pons
9,10,11,12 \rightarrow in medulla
\rightarrow Certain nuclei Red nucleus in midbrain
\rightarrow PETICULAR AORMATintia gelatinosa" "
\rightarrow Certain vital centres within RF

Figure 75 Medial view of the brain, arachnoid

 and pia mater removed. Median section ($\times 1.5$)A. Medial frontal gyrus
B. Cingulate sulcus
C. Cingulate gyrus
D. Isthmus of cingulate gyrus
E. Parieto-occipital sulcus
F. Cuneus
G. Calcarine sulcus
H. Lingual gyrus
I. Interventricular foramen
J. Thalamus
K. Hypothalamic sulcus (position of)
L. Hypothalamus
M. Optic recess of third ventricle
N. Optic chiasma
O. Infundibulum and infundibular recess of third ventricle
P. Tuber cinereum
Q. Mamillary body
R. Posterior commissure
S. Superior colliculus? Tectum of midbrain
T. Inferior colliculus $\}$
U. Cerebral peduncle of midbrain
V. Pons (anterior or basilar part)
W. Medulla
X. Cerebellum (vermis)
Y. Cerebellum (hemisphere)
Z. Pons (tegmentum or posterior part)

Can you locate:
Corpus callosum (rostrum, genu, trunk, splenium)
Fornix
Anterior commissure
Pineal recess of third ventricle
Cerebral aqueduct
Fourth ventricle
Pineal body

Figure 74 Medial view of the brain, arachnoid and pia mater removed. Median section ($\times 1.5$)
A. Straight gyrus (gyrus rectus)
B. Paraterminal gyrus
C. Subcallosal area
D. Cingulate gyrus
E. Cingulate sulcus (and its marginal ramus)
F. Paracentral lobule
G. Central sulcus
H. Precuneus
I. Parieto-occipital sulcus
J. Calcarine sulcus
K. Splenium of corpus callosum
L. Trunk of corpus callosum
M. Genu of corpus callosum
N. Rostrum of corpus callosum
O. Septum pellucidum
P. Body of fornix
Q. Choroid plexus of lateral ventricle
R. Pineal body
S. Interthalamic adhesion
T. Anterior commissure
U. Cerebral aqueduct
V. Superior medullary velum
W. Fourth ventricle

Can you locate.
Medial frontal gyrus
Cuneus
Lingual gyrus
Interventricular foramen
Thalamus and hypothalamus
Optic nerve and chiasma
Optic recess of third ventricle
Midbrain (cerebral peduncle and tectum)
Pons
Medulla
Posterior commissure

Normal T1-weighted MRI scan

OBustami

White matter of Cerebrum
(I) Corpus callasum: Large commisunal Pibreo

(II) Projection fibres

Internal aposule
(1) Ent: Limb: Contains a) Fronto pontine fibres b) ant: thatame fibres
(2) Genu: Corticobulbur ??
(3) Post. limb: three parts
a) Lentiform part :
(1) Corticospinal tract.
(2) Sensury radiation (middle thalamic firres)
(B) Retrolentiform part
(1) Visual racliation
(2) occipilopontin
(-) Sublenti Form part
(1) auclitory radiation
(2) temporo pontine

Corpus striatur (Basal ginglia)
FCaudrte (head-body and tail).
II lextiform (Putane, and globus pallidus

III Association fibres : are the fibres that coined the gur of hexizshort: Prom one gyrus to another.
sphere long: Connect the gyrus with a very large number of other gyri of the same hemisphere

superior Longitudinal fibres

Fig. 7.2 Anteroventral surface of the cerebellum. The right tonsil of the cerebellum has been removed to show the inferior meduliary velum.
(Cerebellar peduncles (see Figure 1.7)
(1) Inferior cerebellar peduncle connects the cerebellum to the medulla. consists of two divisions:
a. Restiform body

- is an afferent fiber system containing:
(1) Dorsal spinocerebellar tract
(2) Cuneocerebellar tract
(3) Olivocerebellar tract
b. Juxtarestiform body
-contains afferent and efferent fibers:
(1) Vestibulocerebellar fibers (afferent)
(2) Cerebellovestibular fibers (efferent)
(2. Middle cerebellar peduncle (Brachium Pontic)
- connects the cerebellum to the pons.
- is an afferent fiber system containing pontocerebellar fibers to the neocerobellum.
- formed of axons of pontine nuclei of opposite side

Fig. 12-4. Motor areas of the cerebral cortex.

B. Motor areas

1. Primary motor cortex (area 4)

-is located in the precentral gyrus and in the anterior part of the paracentral lobule (on the medial surface) \rightarrow lower limb \oplus $*$-contributes to the corticospinal tract. sphincters
-is somatotopically organized as the motor homunculus (see Figure $23.2 B) \rightarrow$ (Face \& limbs) are represented here

- contains the giant cells of Beta in layer V.
-stimulation results in contralateral movements of voluntary muscles.
-ablation results in a contralateral upper motor neuron lesion.
-bilateral lesions of the paracentral lobule (e.g., parasagittal meningiomas) result in urinary incontinence.
- lesion in area $4 \rightarrow$ flaccid paralysis of distal muscles of limbs \oplus bypotoria \oplus decreased muscle stretch reflexes \rightarrow when the sphere of lesion is increased to include premetor area 6 (in which trunk and axial muscles we represented) \rightarrow loss of control over briinstem centres generates a state of spasticity that overshadows
flaccidity

2. Premotor cortex (area 6)

-is located anterior to the precentral gyrus.
*-contributes to the corticospinal tract.
-plays a role in the control of proximal and axial muscles; it prepares the motor cortex for specific movements in advance of their execution.
-stimulation results in adversive movements of the head and trunk and flexion and extension of the extremities.

- plays a role in planning of execution c) movement
- Lesion \rightarrow appearance of (grasp response) \rightarrow Look at page $2-4$

3. Supplementary motor cortex (area 6)
-is located on the medial surface of the hemisphere anterior to the paracentral lobule.
*-contributes to the corticospinal tract.

- plays a role in programming complex motor sequences and in coordinating bilateral movements; it regulates the somatosensory input into the motor cortex.

Frontal eye field

Left Right Left Right

Destructive lesion of Rt. Aortal ese field
\rightarrow conjugate deviation of the eyes toward the side of the lesion $\left(R_{t}\right.$.)

Stimulation (irritative lesion) of Printicl eye field \rightarrow conjugate
deviation deviation of eyes to the opposite side (in the dirigrim stimulation of R_{t}. frontal ese fid)

- Primary somatosensory cortex (area 3,1, and 2)
- location \rightarrow in the post-central gyrus (parietal cole) ind in the posterior part of the paricential lobule (on medina surface)
- Somitotopicilly organized an the sensory homancuhes

A Sensory homunculus
 \vec{b} The $\begin{aligned} & \text { Th } \\ & \text { represented in a precise }\end{aligned}$ Gut disproportionate manner in the somatosensory cortex I The representation of the flips is disproportionately large Thunk that in comparison with their index finger) size in the body This is a reflection of the functional importance of these ports in sensory function.
The ry somatosensory cortex is formed of functional units which we modality specific \rightarrow each Unit is in the form of a vertical column of cells
-... Neurons within a cortical Unit are activated by the same $\underbrace{p e r i p h e r}$ l stimulus and are related to the same receptive fielder cha 3 is äcrivited by cutinneus stimuli $\operatorname{pethin}_{\text {temperature }}^{\text {whereas }}$ oneal 2 receives proprioceptive impulses (from muscles, tendons if joints; $(3 b+1=$ cutaneous input) ($3 a+2=$ proprioceptive)

Lesion of area $3,1,2$ (Primary somatosensory aura)
\rightarrow contalateral loss of all types of sensations, Soon, however pain of temperature sensations wile return \rightarrow It is beleived that pain a tempeniture sensations are determined at thalamic level Whereas $\left\{\begin{array}{l}\text { source } \\ \text { severity } \\ \text { quality }\end{array}\right\}$ of such sensations are perceived at postcental gyrus $(3,1,2)$

Visual cortex
Raft Right $\rightarrow \begin{aligned} & \text { Cuneus (above) (H) lingual gyrus (below) } \\ & \text { the calcarine Sulcus (cortex recipes }\end{aligned}$
 fibres from the ipsilateral half of each retina which convey information about the contulateril half of the visual field

- lesion of aria $17 \rightarrow$ Defects in Visual field
- Lesion of arias $18,19 \rightarrow$ visual agnosia (patient in able to see objects but. is innille to recognize them)

TheCerebrospinal Fluid, theVentricles of the Brain, and the Brain Barriers

Ventricles - lateral view

Ventricles - dorsal view

TABLE 3-6. Composition of CSF

$[\mathrm{CSF}] \approx[$ Blood $]$	$[\mathrm{CSF}]<[$ Blood $]$	$[\mathrm{CSF}]>[$ Blood $]$
Na^{+}	K^{+}	Mg^{2+}
Cl^{-}	Ca^{2+}	Creatinine
HCO_{3}^{-}	Glucose	
Osmolarity	Cholesterol*	
	Protein**	

* Negligible in CSF

FIGURE 3-35. Mechanism for production of cerebrospinal fluid. CSF, cerebrospinal fluid.

The barrier between cerebral capillary blood and CSF is the choroid plexus. This barrier consists of three layers: capillary endothelial cells and basement membrane, neuroglial membrane, and epithelial cells of the choroid plexus. The choroid plexus epithelial cells are similar to those of the renal distal tubule and contain transport mechanisms that move solutes and fluid from capillary blood into CSF.

The barrier between cerebral capillary blood and interstitial fluid of the brain is the blood-brain barrier. Anatomically, the blood-brain barrier consists of capillary endothelial cells and basement membrane, neurogliai membrane, and glial end feet (projections of astrocytes from the brain side of the barrier). Functionally, the blood-brain barrier differs in two ways from the analogous barrier in other tissues. (1) The junctions between endothelial cells in the brain are so "tight" that few substances can cross between the cells. (2) Only a few substances can pass through the endothelial cells: Lipid-soluble substances (e.g., oxygen and carbon dioxide) can cross the blood-brain barrier, but water-soluble substances are excluded.

FORMATION OF CSF

Formation of CSF

CSF is formed by the epithelial cells of the choroid plexus. Transport mechanisms in these cells secrete some substances from blood into CSF and absorb other substances from CSF into blood. Molecules such as protein and cholesterol are excluded from CSF because of their large molecular size. On the other hand, lipid-soluble substances such as
oxygen and carbon dioxide move freely and equilibrate between the two compartments. Thus, depending on the transport mechanisms and the characteristics of the barrier, some substances are present in higher concentration in CSF than in blood, some are present at approximately the same concentration, and some are present in lower concentration in CSF than in blood. Many substances readily exchange between brain interstitial fluid and CSF (see Figure 3-35), thus the compositions of interstitial fluid and CSF are similar to each other but different from blood. Table 3-6 compares the composition of CSF and blood.

MENINGES:
 Dura Mater, Arachnoid, \& Pia Mater

Frontal Section through the brain

ABSORPTION OF CEREBROSPINAL FLUID

The cerebrospinal fluid is absorbed into the arachnoid villi that project into the dural venous sinuses, especially the superior sagittal sinus (Fig. 17-1). The arachnoid villi are grouped together to form arachnoid granulations. Each arachnoid villus is a diverticulum of the subarachnoid space that pierces the dura mater.

Absorption of cerebrospinal Huid into the venous sinuses occurs when the cerebrospinal Huid pressure exceeds that in the sinus. Studies of the arachnoid villi indicate that fine cubules lined when endothelium permit a direct flow of fluid
from the subarachnoid space into the lumen of the venous sinuses. Should the venous pressure rise and exceed the cerebrospinal fluid pressure, compression of the villi closes the tubules and prevents the reflux of blood into the subarachnoid space.
Some of the cerebrospinal fluid is absorbed directly into the veins in the subarachnoid space and escapes through the perineural lymph vessels of the cranial and spinal nerves.

SUBARACHNOID SPACE

The subarachnoid space is the interval between the arachnoid mater and pia mater and envelops the brain and spinal cord (Fig. 17-1). The space is filled with cerebrospinal fluid and contains the large blood vessels of the brain. Inferiorly, the subarachnoid space extends beyond the lower end of the spinal cord and invests the cauda equina. The subarachnoid space ends below at the level of the interval between the second and third sacral vertebrae.

Subarachnoid Cisterns. In certain locations around the base of the brain, the arachnoid does not closely follow the surface of the brain so that the subarachnoid space expands to form cisterns. The cerebellomedullary cistern lies between the cerebellum and the medulla oblongata, the pontine cistern lies on the anterior surface of the pons, and the interpeduncular cistern lies on the anterior surface of the midbrain between the crura cerebri.

CIRCULATION OF CEREBROSPINAL FLUID

The fluid passes from the lateral ventricles into the third ventricle through the interventricular foramina (Fig. 17-1). It then passes into the fourth ventricle through the cerebral aqueduct. The circulation is aided by the arterial pulsations of the choroid plexuses.
From the fourth venticle, the fluid passes through the median aperture and the lateral foramina of the lateral recesses of the fourth ventricle and enters the subarachnoid space. The fluid then flows superiorly through the interval in the tentorium cerebelli to reach the inferior surface of the cerebrum (Fig. 17-1). It now moves superiorly over the lateral aspect of each cerebral hemisphere. Some of the cerebrospinal nuid moves inferiorly in the subarachnoid space around the
spinal cord and cauda equina. The pulsations of the cerebral and spinal arteries and the movements of the vertebral colurm facilitate this flow of fluid.

Fir. 29-13 A. horizontal section of the orbit. B, transverse section of the optic nerve.

Fig. 29-12 A, normal fundus oculi. B, papilledema.

Extensions of the Subarachnoid Space. A sleeve of the subarachnoid space extends around the optic nerve to the back of the eyeball. Here the arachnoid mater and pia mater fuse with the sclera. The central artery and vein of the retina cross this extension of the subarachnoid space to enter the optic nerve and they may be compressed in patients with raised cerebrospinal fluid pressure. Small extensions of the subarachnoid space also occur around the other cranial and spinal nerves.

The Pressure of the Cerebrospinal Fluid

Any obstruction to the normal passage of cerebrospinal fluid causes the fluid to back up in the ventricles and leads to a general increase of intracranial pressure. After the pressure has been elfvated for some time, usually a matter of days or weeks, the effect can be seen by inspecting the fundus of the eye with an ophthalmoscope. Due to the high pressure inside the sleeve of dora mater which surrounds the optic nerve, the retinal veins are dilated and the optic nerve head (optic disc) is pushed forward above the level of the retina. This is known as papilledema, or choked disc. If papilledema has persisted for a long time, the fibers of the optic nerve will be damaged and the disc assumes a chalk-white color instead of the normal pale pink.

Optic Disc

(blind spot) blood vessels \& optic nerve enter and exit here

Fovea Centralis
concentration of cones
for color vision \&
high visual acuity

The most common cause of/papilledema is a tumor of the brain compressing some part of the ventricular system. Tumors far removed from the ventricles may not produce obstruction until they reach very large size. A turnor of the cerebellum generally exerts pressure on the roof of the fourth ventricle, and, since it is confined within the posterior fossa by the semi-rigid tentorium cerebelli with little room for expansion, it is likely to cause early obstruction to the flow of cerebrospinal fluid through the fourth ventricle. Tumors near the orbital surface of one frontal lobe may compress the optic nerve and produce optic atrophy in that eye, while the other eye develops papilledema from generalized elevation of pressure as the tumor expands in size, the Foster Kennedy syndrome. Other cardinal signs of brain tumor in addition to papilledema are persistent headache and vomiting. The headache is probably caused from the stretching of nerve endings in the dura mater. Irritation of the vagal nuclei in the floor of the fourth ventricle accounts for nausea and voiniting.

FUNCTIONS OF THE CEREBROSPINAL FLUID

The cerebrospinal fluid serves as a protective cushion between the central netvows system and the surrounding bones. The close relationship of the Hurd to the nervous tissue and the blood enables it 20 serve as a reservoir and assist in the regulation of the contents of the skull. The cerebrospinal fluid is an ideal physiological substrate and probably plays an active part in the nourishment of the nervous tissue; it almost certainly assists in the removal of products of netronal metabolism. The secretions of the pineal gland possibly influence the activities of the pituitary gland by circulating through the cerebrospinal fluid in the third ventricle.

HYDROCEPHALUS

Hydrocephalus is an abnormal increase in the volume of the cerebrospinal Hid within the skull. If the hydrocephalus is accompanied by a raised cerebrospinal fluid pressure, then it is due to either (1) an abnormal increase in the formation of the fluid, (2) a blockage of the circulation of the fluid, or (3) a diminished absorption of the fluid. Rarely, hydrocephalus occurs with a normal cerebrospinat fluid pressure and in these patients there is a compensatory hypoplasia or atrophy of the brain substance.

BLOOD-BRAIN BARRIER

The blood-brain barrier protects the brain from toxic compounds. In the newborn child or premature infant, where these barriers are not fully developed, toxic substances such as bilirubin can readily enter the central nervous system and produce yellowing of the brain and kernicterus.

In certain situations, however, it is important that the nerve cells be exposed without a barrier to the circulating blood. This enables neuronal receptors to sample the plasma directly and to respond and maintain the normal internal environment of the body within very fine limits. There is no blood-brain barrier in the pineal gland, the hypothalamus, the posterior lobe of the pituitary, the tuber cinereum, the wall of the optic recess, and the area postrema at the lower end of the fourth ventricle.
The blood-brain barrier is formed by the tight junctions between the endothelial cells of the blood capillaries. In those areas where the blood-brain barrier is absent, the capillary endothelium contains fenestration across which proteins and small organic molecules may pass from the blood to the nervous tissue.

Lateral Ventricle

Fig. 9.3 Coronal section of the cerebrum through the anterior horns of the lateral ventricles. (Mulligan's stain, 0.6 natural size.)

CORONAL SECTION of the BRAIN passing through cerebrum, Grainstem and 2 pouts of the lateral ventricle (booby and inferior horn)

Notice that the CRUS CERERRi of midbrain is continuous Rostrilly (superiorly) with the internal capsule (motor part) and caudally with the basilar rect of pons \rightarrow Remember thant the crus cerebri contains Pyramidal fibres (corricospinal 4 corticobulbau) as well as CORTICO-PONTINE fibres (from cerebral cortex to pontine nuclei)

- What are structures present at the floor of the body of later ventricle? \qquad body of caudate n. thalamus
- Functions of heppothilamus? (H) meostas's

(1) Cerefril cortex (sulci\& gyri) (2) corpus cillosum e.g of commissural fibres connecting the 2 cerebril hemispheres (3) body of lateral ventride (4) inferior horn of lnteral ventric.le
(5) third ventricle (Genween the 2 thilrmi) (6) thalamus (7) hypor thidimus
(8) Red nucleus (in midbriin) (9) Substantin nigra (in midbrain)
(10) crus cerebri (basis pedunculi) of midbrain \rightarrow continuous rostrally, with motor part of internil capsule (12) medulla oblongata (11) pons (13) pyramid (within medulla) (14) corona radinta (15) internil capsule (16) putamen (17) globus pollidus $N \cdot B 16+17=$ Lenticular nucleus (18) Coudrte nucleus clrustrum 20 literal fissure 21 insula

Notice \rightarrow Roof and internal wall of the Posterior hon are formed by the tapetum (extension from corpus collosum) however, enteral to this there is pout of the Retrolentiform part of internal capsule which contains the fibres of optic radiation
\rightarrow Medial will is formed by: bulb \rightarrow extension from splenium Calcar avis \rightarrow formed, by calcarine fissure
fourth ventricle:

Angeled horizontal section of Prrin rassing through CEREBRUM, basal ginglia, thidami, 2 parts of ventricle (int. 4 post-horns), 2 paits of corpus callosam (Genu \& splenium)

Median sagittal section of the brain showing the medial surface of the certarel hemisphere

\otimes
Notice the continuity between the cingulate gyrus and the parehippocimpil gyrus.

The major afferent connection of the hypothalamus is the fornix, a

Remember that the limbic lobe is part of the limbic $\frac{\text { system }}{\sqrt{1}}$

but recent

anterior nucleus of the thalamus. The anterior thalamic nucleus sends fibers to the cingulate gyrus, which is the long gyrus next to the corpus callosum on the medial aspect of the cerebrum. The cingulate gyrus encircles the corpus callosum and, in its posterior part, is continuous through a narrowed strip (the isthmus) with the parahippocampal gyrus, the most medial convolution of the temporal lobe. Together the cingulate gyrus, isthmus, parahippocampal gyrus, and the incus, an eminence near the front of the hippocampal gyrus form a ring of cortex known as the limbic lobe of the brain (see Fig.

