

Intracrine Hormones: act within the cell that produces them.

Per2

Not a target cell (no receptors)

Resources for the 3 lectures

- Harper's Illustrated Biochemistry
- Stryer's Biochemistry
- Campbell's Biochemistry

Hormones: The Remote Controllers

- What are hormones? Organic, blood, low amounts, source & target
- Functions:
 - They help maintain homeostasis
 - Mediate responses to external stimuli
 - Play roles in growth and development stimulu
- Classes:
 - Endocrine hormones
 - Distance; stability; & concentration
 - Paracrine hormones
 - Autocrine hormones

Hormon

Coordinated response to stimulus

Nervous vs./& Endocrine

Two systems act individually and together in regulating the human physiology

THE TARGET CELL CONCEPT

- 200 types of differentiated cells in humans
- Only a few produce hormones! (<50 known hormones)
- All of the 75 trillion cells in a human are targets to one or more
- One hormone → several cell types
- One cell type → several hormones
- One hormone → several effects
- The definition of a target has been expanded to include any cell in which the hormone (ligand) binds to its receptor, regardless of the action

THE TARGET CELL CONCEPT

 Several factors determine the response of a target cell to a hormone:

Factors affect the concentration of the hormone at the target cell

- ✓ The rate of synthesis and secretion of the hormone
- ✓ The proximity of the target cell to the hormone source (dilution)
- \checkmark The K_d of the hormone receptor complex
- ✓ The rate of conversion of inactive form to the fully active form
- ✓ The rate of clearance from the plasma

THE TARGET CELL CONCEPT

 Several factors determine the response of a target cell to a hormone:

Factors affecting the target cell response

- ✓ The number, relative activity, and state of occupancy of receptors
- The metabolism (activation / inactivation) of the hormone in the target cell
- ✓ The presence of factors within target cell necessary for the response
- ✓ Up- or down-regulation of the receptors upon interaction with ligand

✓ Post-receptor desensitization of the cell

Receptors Discriminate Precisely Receptors Follow Type A Response

- Major challenge:
 - Atto- to nano-molar range (10⁻¹⁵ to 10⁻⁹ mol/L) vs. Structurally similar molecules (sterols, amino acids, peptides, and proteins): micro- to milli-molar (10⁻⁶ to 10⁻³ mol/L) range

Accordingly; Hormone-Receptor Interactions

- Should be specific: displaceable by agonist or antagonist
- Should be saturable
- Should occur within the concentration range provided

- Association constant K_a
- Dissociation constant K_d
- K_a = [H-R] / {[H] X [R]}
 K_d = {[H] X [R]} / [H-R]

- 20X dissociation constant is enough to saturate the receptor
- \mathbf{K}_{d} values for many hormone range from 10⁻⁹ to 10⁻¹¹ M

Receptor Domains

- All receptors have at least two functional domains:
 - Recognition domain
 - Coupling or signal transduction domain
- Coupling occurs in two general ways:
 - Changing the activity of an enzyme (Polypeptide & catecholamines, plasma membrane)
 - Direct (steroids, retinoids, and thyroid hormones, intracellular)
- Steroid, thyroid, and retinoid hormone receptors:
 - Hormone binding site ; DNA binding site; co-regulator proteins binding site, cellular trafficking proteins binding site
- Receptor–effector coupling— provides the first step in amplification

How the release is controlled?

Classification of Hormones Chemical Structure

- Chemical composition; solubility; location of receptors; nature of the signal used to mediate hormonal action
- Polypeptides: Pituitary hormones; Hypothalamic releasing hormones; Insulin, Growth factors...

Amino acid derivatives: Adrenalin, Thyroid hormones

Classification of Hormones Mechanism of Action

- Hormones that bind to intracellular receptors
 - Steroids
 - Thyroid hormones
 - Calcitriol, retinoic acid
- Hormones that bind to cell surface receptors (According to second messenger):
 - cAMP (β adrenergic factor, glucagon, ACTH)
 - cGMP (atrial natriuretic factor, Nitric oxide)
 - Calcium or phosphatidyl inositol (oxytocin, TRH)
 - Kinase or phosphatase cascade (insulin, GH)

General Features of Hormone Classes

	Group I	Group II
Types	Steroids, iodothyronines, calcitriol, retinoids	Polypeptides, proteins, glycoproteins, catecholamines
Action	Slow	Fast
Solubility	Lipophilic	Hydrophilic
Transport proteins	Yes	No Cytoplasmic responses Cytoplasmic responses
Plasma t _{1/2}	Long (hrs - days)	Short (minutes)
Receptor	Intracellular	Plasma membrane
Mediator	Receptor- hormone complex	cAMP, cGMP, Ca ²⁺ , kinase cascades, metabolites of phosphoinositols

Hormones Classes Steroid hormones

- A. Sex hormones are divided into 3 groups
 - **1**. Male sex hormones or Androgens
 - 2. Female sex hormones or Estrogens
 - 3. Pregnancy hormones or Progestines
- B. Hormones of Adrenal Cortex
 - 1. Mineralocorticoids: aldosterone....
 - 2. Glucocorticoids: cortisol. ...
 - 3. Adrenal androgens: male sex hormones mainly dehydroepiandrosterone (DHEA) and testosterone

Hormones Classes Non steroid hormones

- A. Peptide and protein hormones
 - All hypothalamic, pituitary, digestive hormones
 - All pituitary hormones are made from single polypeptide chains EXCEPT: TSH; FSH; LH (homodimers) – glycoproteins (≈ 25 kDa)
- B. Amino acid derivatives
 - Amines derived from tyrosine or tryptophan TH, dopamine, epinephrine, melatonin

Lipid – soluble hormones:

Amino Acid-Derived Hormones

Tyrosine derivatives

Т,

OH-

Peptide & Protein Hormones

Peptide & Protein Hormones

C. Peptides of various sizes

TRH

ACTH

Peptide & Protein Hormones

Hormone	Structure
GHRH	44
TRH	3
GnRH	10
CRH	41
ADH	9
Vasopressin	9
Angiotensin I	10
Angiotensin II	8
Insulin	51
Glucagon	29

Synthesis of Peptide Hormones

- From precursor polypeptides
 - One gene may code more than one hormone (POMC)
 - The cleavage depends on specific enzymes

Synthesis of Peptide Hormones

- From precursor polypeptides
 - Vasopressin and oxytocin
 - Synthesis in separate cell bodies of hypothalamic neurons

Oxytocin

Prepro-vasopressin

Synthesis of Peptide Hormones

- Peptide & Protein Hormones
- From Pre-pro-hormones
- A larger precursor preproinsulin
 - 23 aa signal sequence
 - 3 disulfide bonds
- Proinsulin
 - Remove the C peptide
- Mature insulin
 - A and B chains

Target cells interactive effects

- Permissive effects one hormone enhances the effect of a later hormone
 - Estrogen up-regulates progesterone receptors in uterus
 - Thyroid hormone increases the effect of epinephrine on breakdown of triglycerides in adipocytes
- 2. Integrative effects hormones produce complementary effects on different tissues
 - PTH and calcitriol increase ECF calcium

Target cells interactive effects

- **3.** Synergistic effects:
 - Both FSH and estrogen necessary for normal oocyte development
 - FSH and testosterone together increase spermatogenesis

4. Antagonistic effects:✓ Insulin and glucagon

Detection, and generation of cellular response

Is a nominal formore signal

Signal Transduction

- Transduction: conversion of one form of a signal to another so as cells can produce many kinds of responses in different ways
- Amplification is a MUST
- Signal (polar, large) should bind receptors:
 - Intrinsic
 - Transmembrane
 - Intra- & extracellular domains
- Is that enough? The need for 2nd messenger
 - Few in number
 - Restricted movement

Second messengers

- Ability to diffuse to other cellular compartments
- Amplification of the signal
 - Enzyme activation
 - Membrane channels
- Some second messengers are common in multiple signaling pathways (≈ 30 hormones uses cAMP!!!)
 - Permits fine tuning but can pose problems
- Types of 2nd messengers:
 - Small molecules: cAMP, cGMP, Ca⁺²
 - Phosphorylation through kinases

Signal Termination

- Is it important?
 - Keeps cells responsive to new signals
 - Failure of termination may cause problem e.g GH & cancer
- How it is achieved?
 - Degradation of the second messenger
 - Dephosphorylation by hydrolysis

Membrane Associated Receptors 7-Transmembrane Helix Receptors (7TM)

- 7α -helices: H-bonding, rigid, hydrophobic
- Signal induces conformational changes
- Is it enough?

Rhodopsin receptor

Extracellular side Cell Membrane Cytoplasmic side

(A)

HOOCLUSIDINTISCINIRGIOISIDI INDIS

Many Ser & Thr residues

Biological Functions Mediated by 7TM

- Smell, Taste, Vision
- Neurotransmission
- Hormone Secretion
- Chemotaxis
- Exocytosis
- Cell Growth, Development
- Viral Infection

All these receptors share the same basic structure; however, they differ in their specificity and effects

G-proteins & cAMP

Hormone → Specific receptor (β1- or β2-adrenergic receptor) → G protein → Adenylate cyclase → cAMP → protein kinase A → phosphorylation

G Protein cycles between two forms

α subunit has GTPase Activity

G protein: stimulatory or inhibitory?

- Cyclic AMP & G Proteins:
 - Hormone → receptor (α2-receptor) → G protein → inhibits adenylate cyclase

G Proteins

- G proteins:
 - More than 100 known G protein–coupled receptors and more than 20 known G proteins
 - Can be activated by combinations of hormones
 - Epinephrine & glucagon act via a stimulatory G protein in liver cells
 - Other than cAMP:
 - Stimulating phospholipase C
 - Opening or closing membrane ion channels

G_{α} subunit transduce many activities

G_s G_{olf} Transducin G_i G_o Gq ↑ Adenylate Cyclase
 ↑ Adenylate Cyclase
 ↑ cGMP Phosphodiesterase
 ↓ Adenylate Cyclase
 Ca²⁺ Channels
 ↑ Phospholipase C

G Proteins (cont.)

- α and γ Subunits have covalently attached fatty acid
- α and βγ can interact with other proteins
- All 7TM receptors appear to be coupled to G proteins GPCRs
- Amplification: receptor → 100's of G protein → 100's of adenylate cyclase → 100's X 1000's molecules/sec of cAMP

cAMP can affect a wide range of cellular processes

- degradation of storage fuels
- † secretion of acid by gastric mucosa
- Dispersion of melanin pigment granules
- Jaggregation of blood plateletes
- Opening of chloride channels

Then what?

Switching off the signal

- Dissociation of the hormone
- GTPase activity of Gα subunit
- Hydrolysis of cAMP (phosphodiesterase)
- Phosphorylation of the hormone bound-receptor followed by binding to β-Arrestin

Cholera

 Cholera toxin → unregulated activity of adenylate cyclase in epithelial cells → Excessive cAMP in epithelial cells stimulates active transport of Na⁺ → large flow of Na⁺ and water from the mucosa → diarrhea

