

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Immunoglobulins

Defense lines (specific vs. non-specific)

 The immune system plays a major role in the body's defense mechanisms

Non-specif	Specific (acquired)	
First line	Second line	≻ Third line
 ✓ Barriers ✓ physical: skin, hair, mucous membranes ✓ chemical: sweat, tears, saliva, stomach acid, urine 	 ✓ Phagocytic WBCs ✓ Antimicrobial proteins ✓ Inflammatory response 	 ✓ Lymphocytes ✓ Antibodies

Innate vs. Acquired Immunity

Innate:

- Natural or native immunity
- Cellular & biochemical defense mechanisms (non-specific)
- Non-adaptive upon repeated infections
- Only recognize microbial agents
- > Acquired:
 - Develops as a response to infection & adapts to the infection
 - Increase in magnitude & defensive capabilities with each successive exposure to a particular microbe
 - > High specificity & memory for distinct molecules
 - Recognize & react to microbial & non-microbial substances

Innate vs. Acquired Immunity

Immune system cells

Immunoglobulins & antigens

- Antibodies: "glycoproteins" synthesized by plasma cells & able to bind foreign molecules even if not encountered before
 - High specificity & high affinity
 - ✓Huge number of different kinds (~10⁸)
 - Synthesis is stimulated by having an immunogen
 - Induces the "effector functions": Inactivation, degradation, lysis
- Antigen: Foreign molecules to which Igs bind
 - Can elicit antibody formation (immounogen)
 - Macromolecule; Protein, polysaccharide, nucleic acid
 - Epitope (Antigenic determinant): each epitope is recognized by a different antibody
 - Hapten: small molecule, antigen if attached to a macromolecule

Hapten-immunogenic response

Immunoglobulins - structure

- All contain a minimum of 2 identical light chains (25 kDa) & 2 identical heavy chains (50 kDa)
- Held together by disulfide bonds
- Y-shaped: binding of antigen at both tips
- Each chain has specific domains
- L chain: amino half (V_L), carboxylic half (C_L)
- H chain: ¼ amino (V_H), ¾ carboxylic
 (C_H1, C_H2, C_H3)

Immunoglobulins - structure

- Antigen binds V_H & V_L domains
- Hinge region:
 - C_H1 & C_H2
 - Flexibileity
 - Independent movement
- F_c & hinge regions differ in the different classes of antibodies
- Papain: 2 antigen-binding fragments
 (F_{ab}) & one crystallizable fragment (F_c)
- Pepsin: one (F_{ab})₂ fragment & one crystallizable fragment (F_c)

Immunoglobulins - structure

- 2 L chains 25 kDa 214 AA
 2 H chains 50 kDa 446 AA
- Light chain:
 - 🗸 1- 110 variable, 111 214 similar
- Heavy chain:
 - 1-113 variable, 114 446 similar
- > 3 stretches (7-12 amino acids) "hypervariable"

Immunoglobulin - Interactions

With antigen (infinite):

- Electrostatic, Hydrogen, Van der Waal's, Hydrophobic
 - The (F_{ab})2 fragment CAN:
 - ✓ Detect & bind the antigen
 - Block the active sites of toxins
 - Block interactions between host & pathogen

With other cells and molecules through the Fc portion (finite)
 The (F_{ab})2 fragment <u>CANNOT</u> activate:

- Inflammatory functions associated with cells
- Inflammatory functions of complement proteins
- Intracellular cell signaling molecules

Domain Structural variation of Immunoglobulins – constant region

Domains are folded, compact, protease resistant structures

The Immunoglobulin Fold

The characteristic structural motif of all Ig domains

A barrel

Barrel under construction

A β barrel of 7 (C_L) or 8 (V_L) polypeptide strands connected by loops and arranged to enclose a hydrophobic interior

Single V_L domain

The Immunoglobulin Fold

Unfolded V_L region showing 8 antiparallel β-pleated sheets connected by loops

Genes involved

The "one gene, one protein" concept is not valid

 $V_1 \quad V_2 \dots V_{39} \quad V_{40}$

Cu

C.,3

Co

C.,1

C.,2b

C.,2a

 $J_1 J_2 J_3 J_4 J_5$

Light chain is a product of at least 3 genes:

- Variable (V_L) gene
- Joining region (J) gene
- Constant region (C_L) gene

Heavy chain is a product of at least 4 genes :

- Variable region (V_H) gene
- Diversity region (D) gene
- Joining region (J) gene

.V17...V50 V51

Constant region (C_H) gene

Combinatorial diversity: How does diversity occur? Dreyer - Bennett hypothesis

- Immune system can generate > 10⁸ antibodies
- Human genome contains ~ 40,000 genes !

How does diversity occur? Rearrangement & splicing (L chain)

- V genes encode the first 97 amino acids
- J genes encode the last 13 amino acids
- Possible combinations (kappa, κ) = 40* 5 = 200
- > Possible combinations (lambda, λ) = 30 * 4 = 120

How does diversity occur? Rearrangement & splicing

All possible combinations (L&H) = (200 + 120) * 8262 = 2.6 * 10⁶

Somatic mutations increases the diversity

Variable Regions

- No two variable regions in different humans are identical
- Relatively invariable regions & other hypervariable regions
- L chains have 3 hypervariable regions (in V_L) & H chains have 4 (in V_H)
- These hypervariable regions comprise the antigen-binding site
- Dictate the amazing specificity of antibodies

Hypervariable regions

Complementarity-determining regions (CDRs)

- About 7-12 amino acids in each one that contribute to the antigen-binding site
- CDRs are located on small loops of the variable domains
- Framework regions: the surrounding polypeptide regions among the hypervariable regions

Variability in other proteins

CDRs interaction with antigens

- Antigen-antibody interactions is based on mutual complementarity between surfaces
- Large antigens: interact with all of the CDRs of an antibody
- Small antigens: interact with only one or a few CDRs that form a pocket or groove in the antibody molecule

Protein: Influenza haemagglutinin

Hapten: 5-(paranitrophenyl phosphonate)pentanoic acid

Immunoglobulin classes - overview

 Igs are classified based on the nature of their heavy chain

Class	Heavy chain	Chains structure	% in serum	T _{1/2} (days)	Comp. fixation	Placental crossing
lgM	μ	Mono-, penta-, & hexa	5-10	5-10	++++	Νο
lgG	γ	Monomer	80	23	++	Yes
lgA	α	Mono-, di-, or tri	10-15	6	-	Νο
lgD	δ	Monomer	0.2-1	3	-	No
lgE	ε	Monomer	0.002	2	-	Νο

Domains in different classes (H-chain)

IgM Class

- Location: Mainly intravascular (blood & lymph), B-cell surface (monomer)
- Known Functions:
 - Primary immune response (1st produced)
- > IgM only exists as a monomer on the surface of B cells
- Monomeric IgM has a very low affinity for antigen
- > A J-chain is involved in the process of multemerization
- > Cµ4 mediates multimerization (Cµ3 may also be involved)

The process of IgM Multimerisation

IgG Class

intestine

Location: Blood, lymph,

wide variety of antigens,

(ex. bacteria, viruses)

- Known Functions
 - The predominant antibody produced in the 2° immune response
 - Provides the major line of defense for the fetus & during first few weeks of newborns
 - Coats organisms to enhance phagocytosis by neutrophils & macrophages (opsonization)

IgA class

Structure & location:

Plasma \rightarrow monomer, dimer, or trimer

Secretions (tears, saliva, intestines, milk, bronchial secretion, urine)

 \rightarrow dimer attached to "secretory component"

Known Functions:

- Localized protection (respiratory & urinary tracts & bowel infections)
- Provides immunity to infant's digestive tract & body (translocated)
- The process of dimerization

IgA & transcytosis

IgD class

Location: B-cell surface (primarily), blood, & lymph

Known Functions:

In serum: function is unknown

On B cell surface: initiate immune response

IgE class

- Location: Blood & bound to mast cells & basophils throughout body
- Known Functions:
 - Allergic reactions (histamines & heparin): increased vascular permeability, skin rashes, respiratory tract constriction (wheezing), & increased secretions from epithelium (watery eyes, runny nose)
 - Possibly lysis of worms

IgE-receptor affinity

 The IgE-receptor interaction is the highest affinity of any Fc receptor
 Binding of IgE to the receptor

increases the half life

Immunological Memory

Class (Isotype) Switching

- Antibodies with identical specificity but of different classes
- Generated in a chronologic order in response to the antigen
- Gene rearrangement: movement of VDJ from a site near one C gene to a site near another C gene

Diseases

- Myelomas: increased production
- Multiple myeloma: a neoplastic condition, increase in one class, or a particular light chain (Bence Jones protein)
- Decreased production may be restricted to a single class or may involve underproduction of all classes (ex. agammaglobulinemia)

