

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Kinetics of enzymatic reactions

Kinetics

- Biochemical Kinetics: the science that studies rates of chemical reactions
- > An example is the reaction (A \rightarrow P), The velocity, v, or rate, of the reaction A \rightarrow P is the amount of P formed or the amount of A consumed per unit time, t. That is,

$$v = \frac{d[P]}{dt}$$
 or $v = \frac{-d[A]}{dt}$

Reaction Rate Law

- The rate is a term of change over time
- The rate will be proportional to the conc. of the reactants
- It is the mathematical relationship between reaction rate and concentration of reactant(s)
- \succ For the reaction (A + B \rightarrow P), the rate law is

Rate
$$= \frac{-\Delta[A]}{\Delta t} = \frac{-\Delta[B]}{\Delta t} = \frac{\Delta[P]}{\Delta t}$$
 $v = \frac{-d[A]}{dt} = k[A]$

From this expression, the rate is proportional to the concentration of A, and k is the rate constant

The order of the reaction & the rate constant (*k*)

A multistep reaction can go no faster than the slowest step

 $v = k(A)^{n_1}(B)^{n_2}(C)^{n_3}$

- k is the rate constant: the higher the activation energy (energy barrier), the smaller the value of k
- (n1+n2+n3) is the overall order of the reaction
 Dimensions of k

Overall order	V=	Dimentions of k
Zero	k	(conc.)(time) ⁻¹
First	<i>k</i> (A)	(time)⁻¹

Enzyme kinetics

- Enzymatic reactions may either have a simple behavior or complex (allosteric) behavior
- Simple behavior of enzymes: as the concentration of the substrate rises, the velocity rises until it reaches a limit
- Thus; enzyme-catalyzed reactions have hyperbolic (saturation) plots

Enzyme kinetics

- The maximal rate, V_{max}, is achieved when the catalytic sites on the enzyme are saturated with substrate
- V_{max} reveals the turnover number of an enzyme
 - The number of substrate molecules converted into product by an enzyme molecule in a unit time when the enzyme is fully saturated with substrate
- At V_{max}, the reaction is in zero-order rate since the substrate has no influence on the rate of the reaction

Expression of enzyme kinetic reactions "Steady State Assumption"

$$E + S \xrightarrow[k_{-1}]{k_{-1}} ES \xrightarrow[k_{-2}]{k_{-2}} E + P$$

$$E + S \xrightarrow[k_{-1}]{k_{-1}} ES \xrightarrow[k_{-2}]{k_{-2}} E + P$$

$$v = \frac{E_t k_2 S}{(k_{-1} + k_2)/k_1 + S}$$

$$v = \frac{E_t k_2 S}{(k_{-1} + k_2)/k_1 + S}$$

$$v = \frac{Vmax S}{K_m + S}$$

$$v = \frac{Vmax S}{K_m + S}$$

$$v = \frac{Vmax S}{K_m + S}$$

$$b = k_1 E \cdot S - k_{-1} ES - k_2 ES$$

$$E_t = E + ES$$

The Michaelis constant (K_m)

> For a reaction:

$$\mathsf{E} + \mathsf{S} \underset{k_{\cdot_1}}{\overset{k_1}{\longleftrightarrow}} \mathsf{E} \mathsf{S} \overset{k_2}{\longrightarrow} \mathsf{E} + \mathsf{P}$$

STEADY STATE APPROXIMATION

$$\frac{I[ES]}{dt} = k_1 [E] [S] - \kappa_1 [ES] - \kappa_2 [ES] = 0 \text{ (approx.)}$$

$$\frac{[E] [S]}{[ES]} = \frac{\kappa_1 + \kappa_2}{k_1} = K_M \text{ Equation 1}$$

K_m, called the Michaelis constant is

$$K_{M} = \frac{k_{-1+} k_{2}}{k_{1}}$$

In other words, K_m is related to the rate of dissociation of substrate from the enzyme to the enzyme-substrate complex

> K_m describes the affinity of enzyme for the substrate

Expression of enzyme kinetic reactions Michaelis-Menten equation

- A quantitative description of the relationship between the rate of an enzyme catalyzed reaction (V_o) & substrate concentration [S]
 - If the rate constant (K_m) and maximal velocity (V_{max})

 $V_{max} \& k_{cat}$

► For the enzymatic reaction $E + S \stackrel{k_1}{\longleftrightarrow} ES \stackrel{k_2}{\longrightarrow} E + P$

k.

Turnover Numbers (k_{cat}) of Some Enzymes

Enzyme	Substrate	$k_{\rm cat}~({\rm s}^{-1})$
Catalase	H_2O_2	40,000,000
Carbonic anhydrase	HCO ₃	400,000
Acetylcholinesterase	Acetylcholine	14,000
β-Lactamase	Benzylpenicillin	2,000
Fumarase	Fumarate	800
RecA protein (an ATPase)	ATP	0.4

The maximal rate, V_{max}, is equal to the product of k₂, also known as k_{cat}, and the total concentration of enzyme

$$V_{max} = k_2 [E]_T$$

k_{cat}, the turnover number, is the concentration (or moles) of substrate molecules converted into product per unit time per concentration (or moles) of enzyme, or when fully saturated

$$k_{cat} = V_{max} / [E]_{T}$$

In other words, the maximal rate, V_{max}, reveals the turnover number of an enzyme if the total concentration of active sites [E]_T is known

The Michaelis constant (K_m) $V_0 = V_{max} \frac{[S]}{[S] + K_M}$

- > The lower the K_m of an enzyme towards its substrate, the higher the affinity
- When more than one substrate is involved? Each will have a unique K_m & V_{max}
- In multi-substrate reaction, the sequence of substrate binding & product release affect the rate equation able **8–6**
- > K_m values have a wide range. Mostly between (10⁻¹ & 10⁻⁷ M)

K _m for Some Enzymes and Substrates			
Enzyme	Substrate	<i>К</i> _т (тм)	
Catalase	H_2O_2	25	
Hexokinase (brain)	ATP	0.4	
	D-Glucose	0.05	
	D-Fructose	1.5	
Carbonic anhydrase	HCO_3^-	26	
Chymotrypsin	Glycyltyrosinylglycine	108	
	N-Benzoyltyrosinamide	2.5	
β -Galactosidase	D-Lactose	4.0	
Threonine dehydratase	L-Threonine	5.0	

 $K_{\rm M} \& K_{\rm D}$ $[E], K_{M} \& V_{max}$

> $K_{\rm D}$: dissociation constant, The actual measure of the affinity > $K_{\rm D} = (k_{-1}/k_{1})$ $E + S \xrightarrow{k_{1}} ES \xrightarrow{k_{2}} E + P$

When you increase the enzyme concentration, what will happen to V_{max} & K_m?

Example

a 10⁻⁶ M solution of carbonic anhydrase catalyzes the formation of 0.6 M H₂CO₃ per second when it is fully saturated with substrate

✓ Hence, k_{cat} is 6 × 10⁵ s⁻¹
 ✓ 10⁴ min⁻¹

- Each catalyzed reaction takes place in a time equal to 1/k₂, which is 1.7 μs for carbonic anhydrase
- The turnover numbers of most enzymes with their physiological substrates fall in the range from 1-10⁴ (s⁻¹)

Fractional Saturation: Physiological [S]/K_M Specificity & Efficiency

- Most enzymes are not normally fully saturated
- Under physiological conditions, the [S]/K_M ratio is typically between 0.01 and 1.0
 Vmax [S] k_{cat} [E_T][S]
- Specificity constant (k_{cat}/K_M): determines the relative rate of the reaction at low [S]
- k_{cat}/K_M (M⁻¹ min⁻¹) is indicative of:
 - Enzyme's substrate specificity: the higher the ratio, the higher the specificity
 - Enzyme's catalytic efficiency: the higher the ratio, the more efficient the enzyme

$$V = \frac{V_{\text{max}} [S]}{K_{\text{M}} + [S]} = \frac{k_{\text{cat}} [E_{\text{T}}][S]}{K_{\text{M}} + [S]}$$

$$V = (k_{\text{cat}} / K_{\text{M}}) [\text{E}][\text{S}]$$

Table 6.2						
Turnover Numbers and Km for Some Typical Enzymes						
Enzyme	Function	k _{cat} = Turnover Number*	<i>K</i> _M **			
Catalase	Conversion of H ₂ O ₂ to H ₂ 0 and O ₂	$4 imes 10^7$	25			
Carbonic Anhydrase	Hydration of CO_2	$1 imes 10^6$	12			
Acetylcholinesterase	Regenerates acetylcholine, an important substance in transmission of nerve impulses, from acetate and choline	1.4×10^4 9.	5×10^{-2}			
Chymotrypsin	Proteolytic enzyme	1.9×10^2 6.	6×10^{-1}			
Lysozyme	Degrades bacterial cell-wall polysaccharides	0.5	6×10^{-3}			

 k_{cat} values vary over a range of nearly 3000 K_{M} values vary over a range of nearly 300 K_{cat}/K_{M} , the range is only 4

Reaction rate (v); Enzyme activity; Specific activity; Turnover number

 Reaction rate; measures the <u>concentration</u> of substrate consumed (or product produced) <u>per unit time (mol/{L.s} or M/s)</u>
 Enzyme activity; measures the <u>number of moles</u> of substrate consumed (or product produced) <u>per unit time (mol/s)</u>

Enzyme activity = rate of reaction × reaction volume
 Specific activity; measures moles of substrate converted per unit time per unit mass of enzyme (mol/{s.g})

Specific activity = enzyme activity / actual mass of enzyme

 This is useful in determining enzyme purity after purification
 Turnover number; measures <u>moles of substrate</u> converted <u>per</u> <u>unit time per moles of enzyme</u> (min⁻¹ or s⁻¹)

Turnover number = specific activity × molecular weight of enzyme

Sample calculations:

A solution contains initially 25.0×10^{-4} mol L⁻¹ of peptide substrate and $1.50 \ \mu g$ chymotrypsin, in 2.5 mL volume. After 10 minutes, 18.6×10^{-4} mol L⁻¹ of peptide substrate remain. Molar mass of chymotrypsin is 25,000 g mol⁻¹.

peptide substrate consumed	= 6.4 x 10 ⁻⁴ mol L ⁻¹ in 10 minutes
Rate of reaction	= 6.4 x 10 ⁻⁵ mol L ⁻¹ min ⁻¹
Enzyme activity	= $6.4 \ge 10^{-5} \mod L^{-1} \min^{-1} \ge 2.5 \ge 10^{-3} L$
(rate × volume)	= $1.6 \ge 10^{-7} \mod \min^{-1}$
Specific activity	= $1.6 \ge 10^{-7} \mod \min^{-1} / 1.50 \ \mu g$
(activity / mass)	= $1.1 \ge 10^{-7} \mod \mu g^{-1} \min^{-1}$
Turnover number	= $1.1 \ge 10^{-7} \mod \mu g^{-1} \min^{-1} \ge 25,000 \ge mol^{-1} \ge 10^{6} \mu g \ge g^{-1}$
(sp. act. × molar mass)	= $2.7 \ge 10^{3} \min^{-1} = 45 \text{ s}^{-1}$

Disadvantage of Michaelis-Menten equation & Lineweaver-Burk or double-reciprocal plot

- Determining the K_m from hyperbolic plots is not accurate since a large amount of substrate is required in order to reach V_{max}
 This prevents the calculation of both V_{max} & K_m
- Lineweaver-Burk plot: A plot of 1/v_o versus 1/[S] (double-reciprocal plot), yields a straight line with an y-intercept of 1/V_{max} and a slope of K_M/V_{max}

> The intercept on the x-axis is $-1/K_{M}$

noitalugas Regulation

1. Isozymes (isoenzymes) The Differential K_M Value "Hexokinase"

- What are isozymes? Same substrate & product, different gene, <u>different</u> <u>localization</u>, <u>different parameters (K_m, V_{max}, k_{cat})</u>
- Hexokinase found in RBCs & in the liver
- Catalyzes the first step in glucose metabolism
- Hexokinase I (RBCs): $K_{\rm M}$ (glucose) \approx 0.05 mM
- Hexokinase IV (glucokinase, liver, pancreas) \approx 5-6 mM
- RBCs: when blood glucose falls below its normal fasting level (≈ 5 mM), RBCs could still phosphorylate glucose at rates near V_{max}
- Liver: rate of phosphorylation increases above fasting levels (after a highcarbohydrate meal)
 - High K_M of hepatic glucokinase promotes storage of glucose
- Pancreas: works as a sensor

Isoenzymes (isozymes), LDH

- lactate dehydrogenases (LDHs);
 - <u>Tetramer; H & M subunits; 5 isozymes;</u> all H
 (heart); all M (muscle); different combinations
 - Different efficiencies
 - M4 functions anaerobically (pyruvate into lactate); H4 functions aerobically (reverse reaction)
 - H4 (low K_m for pyruvate & inhibited by high levels of pyruvate); M4 (higher K_m for pyruvate & is not inhibited by pyruvate)

Example of a physiological significance of K_M; Effect of alcohol

- Sensitivity of individuals to ethanol vary
- More sensitive people will exhibit facial flushing and rapid heart rate (tachycardia) after ingesting even small amounts
- Alcohol dehydrogenase followed by aldehyde dehydrogenase
- Acetaldehyde (the cause of the symptoms)
- Most people have two forms of the ALDH:
 - ✓ 1. Mitochondrial (low $K_{\rm m}$)
 - \checkmark 2. Cytosolic (high $K_{\rm m}$)
- Sensitive people have a mutation in 1 (less active)
- 2 is less active:
 Acetaldehyde escape to blood stream

2. Inhbition

2.1 Mechanism-Based Inhibitors

- Mechanism-based inhibitors mimic or participate in an intermediate step of the catalytic reaction
- The term includes:
- A. Covalent inhibitors
- B. Transition state analogs
- C. Heavy metals
- The kinetic effect of irreversible inhibitors is to <u>decrease the concentration of active enzyme</u>

2.1.A. Covalent Inhibitors

- Covalent or extremely tight bonds with aactive site mino acids
- Amino acids are targeted by drugs & toxins
- The lethal compound [DFP] is an organophosphorus compound that served as a prototype for:
 - The nerve gas sarin
 - The insecticides malathion & parathion
- DFP also inhibits other enzymes that use serine (ex. serine proteases), but the inhibition is not as lethal

B. Reaction with organophosphorus inhibitors

Sarin

2.1.A. Covalent Inhibitors

- Aspirin (acetylsalicylic acid): covalent acetylation of an active site serine in the enzyme prostaglandin endoperoxide synthase (cyclooxygenase)
- Aspirin resembles a portion of the prostaglandin precursor that is a physiologic substrate for the enzyme

2.1.B. Transition-State Analogs & Compounds that Resemble Intermediate Stages of the Reaction

- Transition-state analogs: extremely potent inhibitors (bind more tightly)
- Drugs cannot be designed that precisely mimic the transition state! (highly unstable structure)
- Substrate analogs: even though they bind more tightly than substrates

2.1.B.1 PENICILLIN

- A transition-state analog to glycopeptidyl transferase
- Required by bacteria for synthesis of the cell wall
- The reaction is favored by the strong resemblance between the peptide bond in the β-lactam ring of penicillin & the transition-state complex of the natural transpeptidation reaction
- Inhibitors that undergo partial reaction to form irreversible inhibitors in the active site are sometimes termed *suicide inhibitors*

2.1.B.2 ALLOPURINOL

- A drug used to treat gout
- Decreases urate production by inhibiting xanthine oxidase
- The enzyme commits suicide by converting the drug to a transitionstate analog
- The enzyme contains a molybdenum–sulfide (Mo-S) complex that binds the substrates and transfers the electrons required for the oxidation reactions
- Xanthine oxidase oxidizes the drug allopurinol to oxypurinol, a compound that binds very tightly to a molybdenum–sulfide complex in the active site

2.1.C. Heavy Metals

- Tight binding of a metal to a functional group in an enzyme
- Mercury (Hg), lead (Pb), aluminum (Al), or iron (Fe)
- Relatively nonspecific for the enzymes they inhibit, particularly if the metal is associated with high-dose toxicity
- Mercury: binds to so many enzymes, often at reactive sulfhydryl groups in the active site
 - It has been difficult to determine which of the inhibited enzymes is responsible for mercury toxicity
- Lead provides an example of a metal that inhibits through replacing the normal functional metal in an enzyme, such as calcium, iron, or zinc
 - Its developmental & neurologic toxicity may be caused by its ability to replace Ca⁺² in several regulatory proteins that are important in the central nervous system and other tissues

2.2 Reversible Inhibitors

- Characterized by a <u>rapid dissociation</u> of the enzyme-inhibitor complex
- Usually these inhibitors bind through <u>non-covalent</u> <u>interactions</u> & inhibitor maintains a reversible equilibrium with the enzyme
- Reversible inhibitors can be divided into two classes: <u>competitive & noncompetitive</u>
- The double-reciprocal plots are highly useful for distinguishing among these inhibitors

2.2.B. Noncompetitive inhibition

