Slide : Enzymes 2

Dr. Name .Nayef Karadsheh

Sections: . $4,5,5$
\square Slide \square Sheet

Medical Committee The University of Jordan

Enzymes

- Historical Background

I Enzyme Catalyzed Reaction

$$
E+S \rightleftharpoons E S \rightleftharpoons E P \rightleftarrows E+P
$$

- Enzymes are protein (Exception Ribozynces)
- High Catalytic Power increase rate by $10^{6} \% 10^{\prime \prime}$-fold
\because High specificity
- Enzymes are Regulated
A. The Active site
- 3-dimensional structure
- Role of functional groups, cofactors
- Transition state.
B. Substrate Binding site
-Lock-and-key Mode?
2-Indecent-tit model
c. The Transition State Complex
$E n \geq y m e s$
- Historical Background

I Enzyme Catalyzed Reaction

$$
E+S \rightleftharpoons E S \rightleftharpoons E P \rightleftarrows E+P
$$

- Enzymes are Protein (Exception Ribozynces)
- High Catalytic Power increase rate by 10^{6} to $10^{14}-f^{1} / d$
- High Specificity
- Enzymes are Regulated
A. The Active site
- 3-dimensional structure
- Role of functional groups, cofactors
- Transition state.
B. Substrate Binding site

LLock-ant-key Modes
2-Imducet-fit mats
c. The Transition State Complex

Enzymes

- Historical Background

I Enzyme Catalyzed Reaction

$$
E+S \rightleftharpoons E S \rightleftharpoons E P \rightleftarrows E+F
$$

- Enzymes are protein
(Exception Ribozynces)
- High Catalytic Power increase rate by 10^{6} \% 10^{14} - fold
\because High Specificity
- Enzymes are Regulated
A. The Active site
- 3-dimensional structure
- Role of functional groups, cofactors
- Transition state.
B. Substrate Binding site

M-Lobk-ant-kEy Modern
2-Indwest-it mode?
c. The Transition State Complex

Active Sites of Enzymes Have Some Common Features:-

- The catalytic groups
- The active site sakes up a relatively mall part of the to tel vnume of an enzyme.
- The active site is a three-dimencional entity formed by group r that come from different pants \& the linear ameno-acid sequence
- Substrates are bound to enzymes by multiple weak interactions.
- Active sites are clefts or Crevices
- The specificity of binding depends on the precisely defined arrangements of atoms in an active site
Emily Fisher's Lock or Key model
K. shlandes Induced Fit model

The energy diagram for the decomposition of 4 L

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow[\text { Catalase }]{\text { en } \mathrm{C}_{2} \text { Transit }}
$$

Curve a :- uncatalyzed
Carve $\frac{b}{\text { catalyst }}+{ }^{\text {iron }}$

$$
\begin{aligned}
& \text { Cutalys } \\
& \text { Curve } \underset{C}{0}+\text { Catalase } \\
& \uparrow 100,000,000
\end{aligned}
$$

$$
\uparrow 100,000,000
$$

$$
\text { Curve } \frac{d}{\text { : uncatalyzed }}
$$

but at elevated temp
Reaction coordinate

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

8^{15}

16 fne prqueticte
8:0 fin
Co H
BAM.gox-r byoztyefe

סonsनेwrz
k_{+}
w^{*}
2^{5}
w^{0}

(bugzferec Alant)
inpry porma
(co-2rpztof
\uparrow (onserf poorng
(cosensyunts)
zwoll ond.wescomp hef.git wrety

Difint HON
=nsiws-cofoctem

II Functional Groups in Catalysis
Mechanism of Enzyme Action Involves

- Proximity and Orientation - All
- Electrostatic Interaction to stabilize transition state - All
- Covalent intermediates - some

Enzymes Employ:-
A. Functiondif group $\frac{\text { Acid Side }}{\text { Amain o }}$ Acid side chain s
All polar amino acids are involved 2.9. Ser, Cys, Lys, His
B. Coenzymes in Catalysis
\longrightarrow Provides functional groups
\longrightarrow Made from vitamins

- 1 Activation - Transfer_Coenzymes

Function g. it connyme binds covalently t. [5] another portion binds tithty to [E]
. 2 Oxidation-Reduction Coenzymes

TABLE 19.1 The Water-Soluble Vitamins and the Coenzymes of Which They Are Structural Components

Table 6.1
Characteristics of vitamins and poenzymes
Name/Structure of Vitamin

Table 8.1. Some Functional Groups in the Active Site

Function of Amino Acid $: 3$ Enzyme Example

Coyalent interme vilates
Cysteine-SH
Serine-OH
Lysirie- NH_{2}
Histidine-NH
Acid-base catalysis
Histidine-NH
Aspartate-COOH

Glyceraldehyde 3-phosphe:te dehydrogenase
Acetylcholinesterase
Aldolase
Phosphoglucomutase
Chymotrypsin
Pepsin

Stabilization of anion formed during the reaction
Peptide backbone-NH Chymotrypsin
Arginine-NH
Carboxypeptidase A
Serine-OH
Alcohcl aehydrogenase
Stabilization of cation formed during the reaction
Aspartate- COO^{-}
Lysozyme

Thiamine Pyrophosphate (TPP)

B

Pyruvate
Carbanion of TPP

$こ$

Resonance forms of ionized hydroxyethyl-TPP

lipoate
FAD
vate Dehydrogenase Complexe
Pyruvate Dehydrogenase Complex

$$
\begin{aligned}
& \text { P2w, } \rightarrow+\rightarrow \\
& A \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20 } \quad \begin{array}{cc}
\mathrm{He} \\
\mathrm{HO}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { эtørqzoriqzid-'ट,' } \varepsilon \text { ตnizonэbA }
\end{aligned}
$$

Oxidafim- Reduction Coenzymes

- Transfers Hydride ions, hydrogen atoms, oxygen
- No covalent intermediates
- Require participation of amino groups \& [E]
- Unique roles i generation I ATP
- Some wort i with metal to transfer é

Cher
en y yous Nit $E \notin$ are ox-red coenzymes $\begin{array}{r}\text { Antioxidants } \\ \text { Ant }\end{array}$

$$
F A D+2 H \longrightarrow F A D H_{z}
$$

C. Metal Ions in Catalysis

Metal ions act as electrophiles

- they assit in binding of substrates
- stabilize developing anions
e.g. Mg^{2+} in binding ATP, TPP
Z_{n}^{2+} in $A D H$
- electrontranspart in Ox-sed-reaction
D. Non Catalytic. Roles of Cofactors
. Binding different regions \rightarrow tart. structure serve os [S], cleaved during reaction

III Optimal pH and Temp.

Mechanism-Based Inhibitors

- lrreversible Inhibitors e.g. DIFP Aspirin (Acetylsulicyltsead)
- Suicide lnhibitors

Allopurinol
Pencilline

- Transition state analogues
- Abzymes

Abzymes:Antibedies raised apainist Analog $=$ of transikion-stere complex

- Have an arrangement of amerio ai. in the variable repion simitar to the atore tite, thestynt as the Lransition shat
2.9. Abzyme tor cosamia eiterasa fransifiam thete analogus \rightarrow thenp:

Figure 19.7 Effect of temperature and pH on reaction rate

Meenanism- ased innibitears
A- React Irreversibly with functional groups - COVALEMT INHIBITORS
A. Normal reaction of acetylcholinesterase

B. Reaction with organophosphorus inhlbitors
 Inhibition
of $a l l$ the sevine s in the proterin,

- A-pirin inhitit the prostr glandui endepercuide syth: hat (Cyplo -oxypenase)
B. Transition State Analogues: and substrate analogues

Bacterial Enzyme Clyeopeptide transpeptidase
bacterial serine peptide bond between 2 D-alamine residues. (for cross-linking) bacterial cl west)

Strained
peptide bond \rightarrow resemble the peptide bond \rightarrow resection state of the
 substrate
(Partial risution form Permanent irreversible inhitor in the active site)

covalent attachment
Apenicilline
glycopeptide transpeptidase

Allopurind! is a suicide inhitsitor of Xantherie. Oxidase
2)

C - Heavy Metals lahibition :- Hg, Pb, AP, Fe
Binel functionct groces, ,

