\square Anatomy/Embryology/Histology
\square Biochemistry
\square Physiology
Pharmacology
\square Pathology
\square PBL

ISlide \square Sheet \square Handout \square
slide \#: 6
Dr's Name: munir gharaibeh

Date:
Price:

AUTACOIDS

Munir Gharaibeh, MD, PhD, MHPE Faculty of Medicine, The University of Jordan

August, 2015

AUTACOIDS

 Endogenous substances with complex physiologic and pathphysiologic functions; commonly understood to include histamine, serotonin, prostaglandins, and vasoactive peptides.
Histamine

- Occurs in plants, animals, venoms, and stinging secretions.
- Formed from l-histidine.
- Mediator of immediate allergic , and inflammatory reactions.
- Plays only a modest role in anaphylaxis.
- Gastric acid secretion.
- Neurotransmission.

Histamine

Stored in granules in mast cells and basophils, and inactivated. Two types of release:
Immunologic Release:

- IgE and antigen interaction causes explosive degranulation and release of histamine, ATP, and other mediators.
Chemical and Mechanical Release:
- Drugs like morphine and tubocurarine.

Molecular Actions of Histamine

 G Protein Coupled Receptors:$\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}$ types, no subfamilies. Activation of H1 receptors (in endothelium, smooth muscle cells, and nerve endings), elicits inositol triphosphate(IP3). Activation of H_{2} receptors(in gastric mucosa, cardiac muscle, and some immune cells), increases cAMP

TABLE 16-1 Histamine eeceptoralutypes

haplow

Subtw Dipdtultm

H_{1}	Smathnex, quditum wrin		Histuxty	Myparina itprodm cititum
H_{P}		5, towe	Whatriv	Ondith 'ratth 'radice
H_{1}	 	4taw	Ruthotisarice matimpop	dotarputit trowart
${ }_{1}$		4twer	Otrmpuat, indt, darith	Thyrantis'

|nnigyit

Pharmacologic Effects of Histamine

 - Satiety effect- Decrease BP and increase HR.
- Constricts bronchial muscle.
- Stimulates GI smooth muscle.
- Stimulates gastric acid secretion.
- Triple Response: intradermal injection causes red spot, edema, and flare response.
- Pain sensation.

Histamine Antagonists

- Physiologic Antagonists:
- Epinehrine
- Release Inhibitors:
- Cromolyn
- Nedocromil
- Receptor Antagonists:
${ }^{-}$H1 antagonists
H2 antagonists

H1 Receptor Antagonists

- Reversible competitive binding to H1 receptors.
- Known long time ago, 60 years.
- Used in the treatment of allergy.
- Available without a prescription(OTC), both alone, or in combination as 'cold preparations" and 'sleep aids"

H1 Receptor Antagonists

- First Generation:
- Strong sedatives because they can cross BBB. Dangers???.
- Examples: Diphenhydramine, Chlorpheneramine
- Have autonomic blocking effects
- Second Generation:
- Less lipid soluble, so no sedative activity.
Examples: Fexofenadine, Loratidine, Cetrizine

Pharmacodynamics of H1 Antagonists

- Sedation:
- Very common with first generation agents.
- Varies among agents and patients.
- No abuse potential.
- Cause stimulation and convulsions at high doses.
- Antinausea and antiemetic.
- Antiparkinsonism.
- Anticholinergic.

Alpha blocking.
Serotonin blocking.
Local anesthesia

Ganoml siructure

Yk:c, ofomited

Ethors or athenslaminu dorthathe

Diphanthyramine or dimenthydrinate

Faxplonaln
 stading

Clinical uses of H1 Antagonists

Allergic reactions:

- More effective when given before exposure.
- Sedative effect reduces awareness of itching.
- Local application may induce allergy by itself.

Motion Sickness and Vestibular Disturbances:
Menier's Syndrome.
Nausea and vomiting of Pregnancy (Morning
Sickness):
Teratogenic in rodents.

H2 Antagonists

Breakthrough treatment for peptic ulcer disease(1972).
Do not completely abolish acid secretion(40-60\%).
Replaced by proton pump inhibitors($\mathbf{1 0 0 \%}$ inhibition).
Cimetidine.
Ranitidine.
Famotidine.
Naziditine.

Serotonin and 5-Hydroxytryptamine

- Serotonin: a vsoconstrictor released from the blood clot.
- Enteramine: a smooth muscle stimulant found in intestinal mucosa.
- 5-Hydroxytryptamine(synthesized in 1951)

Serotonin and 5-Hydroxytryptamine

 Widely distributed in nature, found in plant (Banana) and animal tissues, venoms, and stings. Synthesized from L-tryptophan. Stored or rapidly inactivated by MAO. 90% is found in the enterochromaffin cells of the GIT.Also found in platelets, enteric nervous system, nerve endings, and brain.
Involved in mood, sleep, appetite, temperature control, and pain perception.
Involved in depression, anxiety, migraine,

TABLE 16-3 Serotonin receptor subtypes currently recognized. (See also Chapter 21.)

Soceptor 5ublyp	Distribution	Postreceptrer Matanim	Prilily Sutotive Agmiss	Pritialy Soloctive Artagonists
$\mathrm{SHT}_{1 /}$	Fiphenudel, hprocimpu	4. dow $^{\text {de }}$	8-CHIDFPT, ${ }^{1}$ mplnoinn	+1970665
${ }_{5} \mathrm{HT}_{1 \mathrm{H}}$	Substrita riga gotous pallidut baitgangla	C. + CAMF	Sumatiptan, 162484'	
$\mathrm{SH}^{-H 1}{ }_{10}$	限碞	4. $\mathrm{cosm}^{\text {a }}$	Sumatplar, dituptan	
SHTH_{4}	Cotex putamin	C. + COMF		
$\mathrm{SHT}_{1 \mathrm{~F}}$	Cotex hlppocimes	5, + ctip	[1334564	
$\mathrm{SHT}_{7 \mathrm{~F}}$	Eratk ramour yem	C.symery	5-Hydreyphdrinie	Paturpids
SHT_{3}	Platiots, mouth musde, conbril cortsis	$\mathrm{C}_{4} \mathrm{TF}_{3}$		Watantain
SHT_{3}	Stomachfundur	$4_{4}+\mathrm{F}_{1}$		P612745
SHT_{π}	Chordid hippocimpus suthentionign	$\mathrm{C}_{4}+\mathrm{P}_{3}$		Mrulagin
$5 \mathrm{HT}_{3}$	A-w porterta wnoy and entrik narves	Secporis an'l E ioncharnd		Gralerim ondareston, othas
SH_{4}	ats and mpertevic nourons mouth musde	5, todme	BMLE, ${ }^{1}$ crupride matodquramide	G713E6)
S-HTAB	Erin	+ ${ }_{\text {ctup }}$		
$\mathrm{SH}_{6} \mathrm{H}_{6}$	Enith	4, 1 chim		

Pharmacologic Effects of Serotonin

Nervous System:

- Melatonin
- Chemoreceptor Reflex(Bezold-Jarish Reflex): activation of $5-\mathrm{HT}_{3}$ receptors in coronary arteries, leads to hypotension and bradycardia.
Respiratory System:
- Bronchoconstriction and hyperventilation.

Cardiovascular System:

- Vasoconstriction.

Vasodilation in skeletal muscles and coronary arteries.
Intact endothelium is required
Platelets aggregation.

Pharmacologic Effects of Serotonin

GIT:

- Stimulation and diarrhea.
- Carcinoid Syndrome: due to a tumor of the enterochromaffin cells.

Skeletal Muscle:

- Serotonin Syndrome:
- Due to excess serotnergic activity.
- Potentially fatal.
- Skeletal muscle contraction and hyperthermia
- Predictable, not idiosyncratic.

Clinical Uses of Serotonin Agonists

Serotonin:

- Has no clinical application.

Buspirone:

- 5 HT A agonist, anxiolytic, nonsedating.

Triptans: e.g. Sumatryptan

- 5HT1D/1B agonists
- First line drugs for migraine headache.

Cisapride:

- $5 \mathrm{HT}_{4}$ agonist used only in gastroesophageal reflux.

Tagaserod:
5HT4 agonist
Fluoxetine:
SSRI, widely used in depression.

Serotonin Antagonists

iill

Phenoxybenzamine:

- An alpha blocker

Cyproheptadine:

- 5HT2 and H1 blocker.
- Useful in carcinoid and serotonin syndrome.

Ketanserine:

- 5 HT2 blocker, antihypertensive agent.

Ritanserine:

- 5 HT2 blocker, prevents platelets sggregation.

Ondansetron:
$5 \mathrm{HT}_{3}$ blocker, used to prevent nausea and vomiting of cancer chemotherapy.

Ecosanoids

- Prostaglandins.
- Thromboxanes.
- Leukotrienes.

Abprostadill [prosteglandl- E_{1}

Curboprost trg-athumine |prociaglandin Fina anelogi.

Epoprortinnol (prostacyoin, PGI_{2} I

$$
\mathrm{LTO}_{4}
$$

Dppputiss

Vasoactive Peptides

- Renin-Angiotensin- Aldosterone System(RAAS).
- Kinins.
- Vasopressin.
- Natriuretic Peptides.
- Endothelins.
- Vasoactive Intestinal Peptide.
- Subtance P.
- Neurotensin.
- Calctonin Gene-Related Peptide.
- Adrenomedullin.
- Neuropeptide Y
- Urotensin.

What is RAAS?

RAAS is a hormonal cascade that functions to control arterial pressure, tissue perfusion, and extracellular volume.
Pathophysiologic processes might occur when components of the RAAS are overexpressed or inhibited, thus disturbing the balance of this regulatory system
Dysregulation of the RAAS plays an important role in the pathogenesis of cardiovascular and renal disorders.

Sympathetic Stimulation
Hypotension
Decreased Sodium Delivery

Local Renin-angiotensin Systems

[The renin-angiotensin system is a classic endocrine system.
[There are complete local renin-angiotensin systems existing entirely within organs and tissues . e.g. in the vascular endothelium, volume depletion increases angiotensinogen levels in aortic smooth muscle.
-Then either locally produced or systemic renin could initiate the sequential formation of angiotensin I and II.

The Cardiac Renin-Angiotensin System -Stretch directly increases:

Release of angiotensin II from cardiac myocytes.

Expression of the angiotensinogen gene on the long-term.
-The apparent function of the cardiac RAAS is to maintain cellular balance of inhibition and cellular growth .

Effects of the Angiotensin II on the Heart

1- Inotropy .
2- Hypertrophy.
3- Ventricular remodeling
4-Electrical remodeling.
5- Pathogenesis of atherosclerosis

Angiotensin II

介 BP

Remodeling of Heart \& Vessels

介Glucose

Atherosclerosis

Alternative Pathways Of The Renin

Alternative enzymatic pathways, not involving ACE, contribute to angiotensin II production.
Human heart chymase appears to be the most important of these pathways, particularly in the ventricles.
The physiologic importance of chymase is uncertain because of the presence of natural protease inhibitors in the interstitial fluid which inhibit chymase-induced angiotensin II production.

Direct Renin Inhibitors

The most recent class of agents that block the RAAS, are the direct renin inhibitors represented by aliskiren,
Recently approved for treatment of hypertension. This compound differs from the ACEIs and ARBs in that, by blocking the catalytic activity of renin at the point of activation of the RAAS, it blocks the synthesis of all angiotensin peptides and prevents the compensatory increase in renin activity

Angiotensin-converting enzyme inhibitors (ACEI)

- ACEI lower systemic vascular resistance and venous pressure, and reduce levels of circulating catecholamines, thus improving myocardial performance.

Angiotensin-converting enzyme inhibitors

ACEI

- Captopril
- Benazepril
- Enalapril
- Fosinopril
- Lisinopril
- Moexipril
- Quinapril
- Ramipril

Cardiorenal Effects of ACE Inhibitors

- Vasodilation (arterial \& venous):
- reduce arterial \& venous pressure.
- reduce ventricular afterload and preload.
- Decrease blood volume:
- natriuretic.
- diuretic.
- Depress sympathetic activity.
- Inhibit cardiac and vascular hypertrophy.

Angiotensin - Converting Enzyme Inhibitors (ACEI)
Therapeutic Benefits:
High-rennin hypertension (present in 20\% of cases). HF and Ischemic Heart Disease.
Do not increase HR.
Diabetic Nephropathy, dilate efferent arterioles which will reduce intraglomerular pressure and consequently protects against progressive glomerulosclerosis.
No need for a diuretic but can be added.
Can be combined with CCBs.
Should not be combined with Beta blockers, except in HF.

Angiotensin - Converting Enzyme Inhibitors (ACEI)

Side Effects:

Captopril is SH containing drug, so very toxic(bone marrow suppression, disguesia, proteinuria, allergic skin rash, fever)

- Hypotension(First Dose Phenomena) especially with renovascular hypertension.
- K+ retention, especially in the presence of renal dysfunction or when combined with K+ sparing diuretics or ARBs.
- Cough(10\% of patients).
- Angioedema.

Angiotensin Receptor Antagonists(ARBs)

Losartan.
Irbersartan.
Candesartan.
Valsartan

Have similar haemodynamic effects to ACEI
Do not affect bradykinin metabolism.
Do not cause cough.
Block the effects of Angiotensin II generated from both pathways (chymase \&ACE)

Kallikrein Kinin System

Actions of Kinins

Cardiovascular System:

- Arteriolar vasodilation: direct \& endotheliumdependent via the release of NO and PGI_{2}
- Venous constriction: direct and via PGF $_{2 a}$
- Increased capillary permeability
- Response to iv bradykinin:
- Transient decrease in BP: direct arteriolar dilation
- Restoration of normal BP: reflex sympathetic discharge

Actions of Kinins

Other Effects:

- Pro-inflammatory
- Algesic: via PGE $_{2}$
- Constrict visceral smooth muscle

Putative Effects:

- Local modulators of blood flow
- Modulate tone of salivary and pancreatic ducts
- Regulate transport of $\mathrm{H}_{2} \mathrm{O}$, electrolytes, aa in GIT

Kinin Receptors

B_{1} :

- Sensitive to des-Arg metabolites
- Kallidin is 10x more potent than BK
- limited tissue distribution
- VSM contraction, proliferation,
- Collagen synthesis, inflammation
- Induced by trauma
$\mathrm{B}_{2}\left(\mathrm{~B}_{2 \mathrm{~A}}, \mathrm{~B}_{2 \mathrm{~B}}\right)$:
- Sensitive to intact peptides
- GPCR; wide tissue distribution
- Vasodilation, permeability, pain.
- Ca^{++}mobilization, Cl - transport, NO, PLC, PLA_{2}, AC

B_{3} : Unknown function

Kinins

Table 25-2
Structure of Kinin Agonists and Antagonists, Listed from Carboxyl Terminus

Name	Structure*	FUNCTION
Bradykinin	Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg	Agonist, $\mathrm{B}_{2}>\mathrm{B}_{1}$
Kallidin	Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg	Agonist, $\mathrm{B}_{2} \simeq \mathrm{~B}_{1}$
des-Arg ${ }^{9}$-bradykinin	Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe	Agonist, B_{1}
des-Arg ${ }^{10}$-kallidin	Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe	Agonist, B_{1}
des-Arg ${ }^{9}$-[Leu $\left.{ }^{8}\right]$-bradykinin	Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu	Antagonist, B_{1}
[D -Phe ${ }^{7}$]-bradykinin	Arg-Pro-Pro-Gly-Phe-Ser[$\mathrm{D}-\mathrm{Phe}$]-Phe-Arg	Antagonist, B_{2} (also B_{1} to some extent)
HOE 140	[D-Arg]-Arg-Pro-Hyp-Gly-Thi-Ser-Tic-Oic-Arg*	Antagonist, B_{2}
WIN 64338	Nonpeptide	Antagonist, B_{2}

*Hyp, trans-4-hydroxy-Pro; Thi, β-(2-thienyl)-Ala; Tic, [D]-1,2,3,4-tetrahydroisoquinolin-3-yl-carbonyl; Oic, (3as,7as)-octahydroindol-2-yl-carbonyl. source: Modified from Trifilieff et al., 1993.

Kinins
 Potential Clinical Uses of KKS Antagonists

- Allergic conditions
- Anti-inflammatory
- Anti-nociceptive

