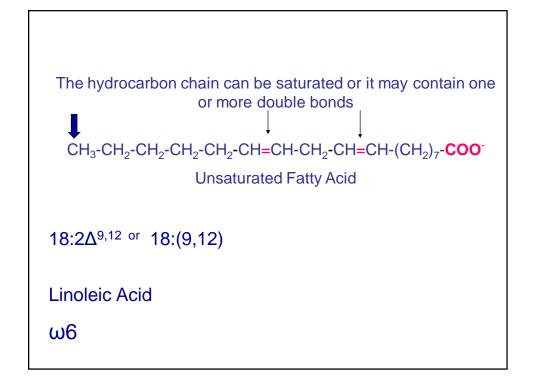


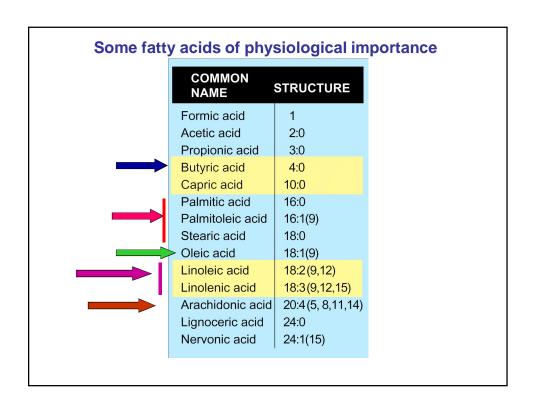
Fatty Acid and Triacylglycerol Metabolism 1

Mobilization of stored fats and oxidation of fatty acids

Lippincott's Chapter 16

CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-COOH


Fatty acid


The pk_a of carboxyl group in fatty acid
$$\approx 4.8$$
So, at physiological pH fatty acid exists as anion

 ω
 β
 CH_3 -CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-COO

Or

 CH_3 (CH₂)_n COO

Triacylglycerol (TAG) or FAT is the major energy reserve in the body

It is more efficient to store energy in the form of TAG

Why FAT not Carbohydrates?

- * More reduced:
 - 9 kcal per gram compared with
 - 4 kcal per gram of carbohydrates
- * Hydrophobic:

can be stored without H₂O carbohydrates are hydrophilic

1 gram carbohdrates: 2 grams H₂O

Why FAT not Carbohydrates? (Continued)

Average adult has 10 Kg of Fat How many calories? 90,000 kcal

What is the mass of carbohydrates that produces 90,000 kcal?

90,000 / 4 = 22.5 Kg

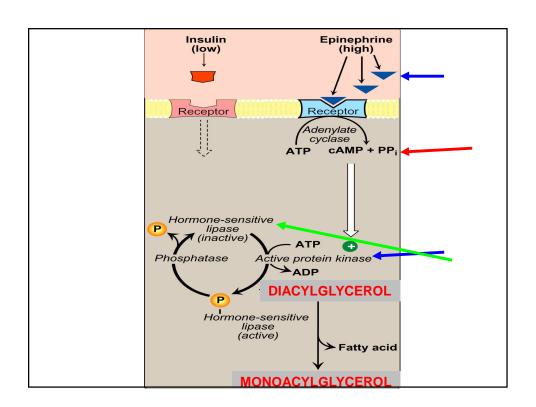
How much water with it?

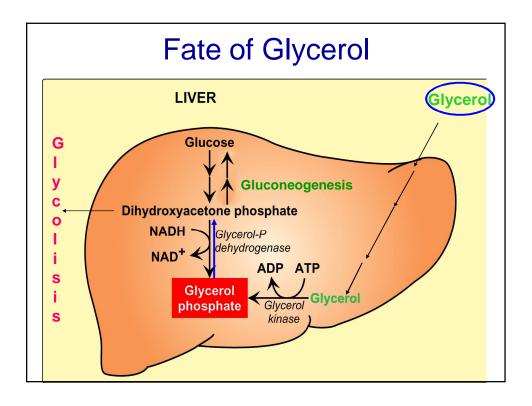
FATTY ACID as FUELS

 The major fuel used by tissues but Glucose is the major circulating Fuel

Fuel type	Amount used/ kcal/12 hours (gram)	Amount in Fluids
FA	540 (60)	3 (0.4)
Glucose	280 (70)	80 (20)

Mobilization of stored fats The need for hormonal signal


- Fat is stored in Adipose tissue
- When needed a hormonal signal must reach the adipocytes.
- Hydrolysis of TAG


TAG +
$$3 \text{ H}_2\text{O} \xrightarrow{\text{LIPASE}} 3 \text{ FA + glycerol}$$

LIPASE :Hormone Sensitive Lipase

Hormones that activate the Hormone Sensitive Lipase

- Glucagon
- Epinephrine
- Norepinephrine
- ACTH

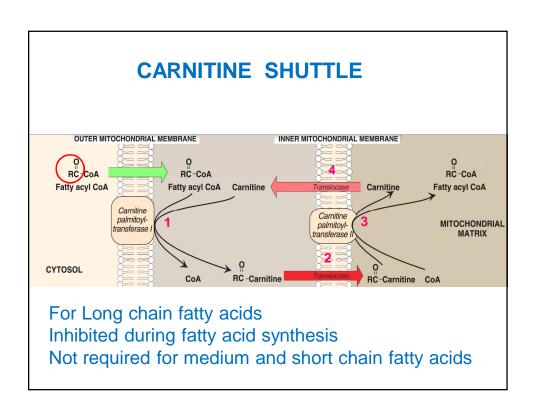
β Oxidation of Fatty Acids

- Fatty Acids are transported to tissues bound to albumin
- Degraded by oxidation at β carbon followed by cleavage of two carbon units

Activation of Fatty Acids

- Joining F.A with Coenzyme A
- RCO~SCoA (Thioester bond)

$$PP_i + H_2O \longrightarrow 2P_i$$


FA + HSCoA + ATP
$$\longrightarrow$$
 FA~CoA + AMP + 2 P_i
AMP + ATP \longrightarrow ADP + ADP

Activation of Fatty Acids (cont.)

- ATP conversion to AMP + 2 P_i is equivalent to hydrolysis of 2 ATP to 2ADP
- Enzyme: thiokinase (Acyl CoA Synthetase)
- Location: outer mitochondrial membrane
 - mitochondrial matrix (for short and medium chain FA)

Transport of long chain Acyl CoA across inner mitochondrial membrane

- Inner mitochondrial membrane is impermeable to Acyl CoA
- Carrier system is required (Carnitine Shuttle)
- It consists of:
 - Carrier molecule
 - Two enzymes
 - Membrane transport protein

