

GENETICS & MOLECULAR BIOLOGY

Slides O Sheet O Handout O other.....

Lecture: 7

Dr. Name: M. AlKhateeb

DESIGNED BY NADEEN AL-FREIHAT

Inborn Error Of Metabolism

Mohammed El-Khateeb MGL-8 April 26th 2015

INBORN ERROR OF METABOLISM DEFINITION OF IEM

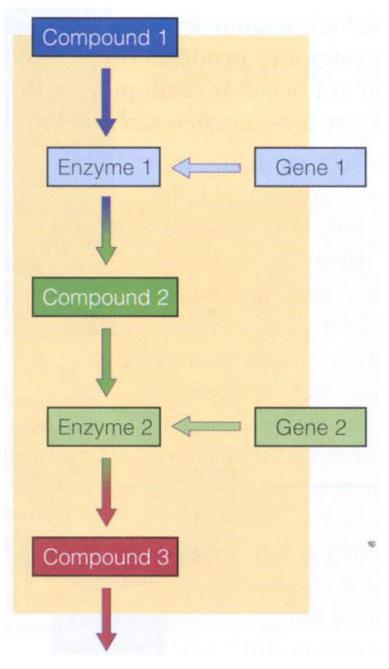
Group of congenital disorders caused by an inherited defect in a single specific enzyme that results in a disruption or abnormality in a specific metabolic pathway

IEM's in General

- Mostly due to defect in or absence of an enzyme, cofactor or transport protein resulting a block in a specific metabolic pathway
- Generally single gene defects
 - Involve all inheritance patterns, however, most common is autosomal recessive
- Common defects on a biochemical level
 - Transport defects
 - Accumulation of substrate
 - Deficiency of product
 - Secondary inhibition

IEM's in General

- Individually-very rare, Collectively-very common
- Generally present in newborn period or shortly thereafter
 - Typically at end of 1st week of life
 - This will be the focus of this talk
- Key to finding IEM's is not a detailed knowledge of biochemical pathways, but a HIGH INDEX OF SUSPICION in any critically ill neonate


Basic Principles:

- Although individually rare, altogether they are 1:800-5000 incidence.
- Broadly Defined: An inherent deficiency in a key metabolic pathway resulting in
 - Cellular Intoxication
 - Energy deprivation
 - Mixture of the two

<u>METABOLISM</u>

Metabolism Catabolism (Breaking down)
 Anabolism (Building up)

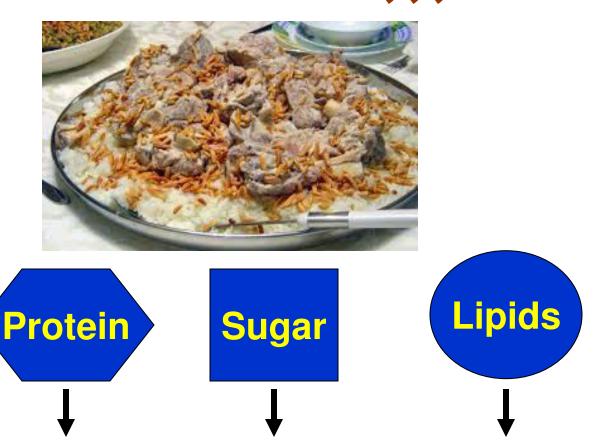
 Enzymes play an important role in facilitating the process by serving as <u>catalysts</u> in the conversion of one chemical (metabolite) to another.

 Chemical Individuality
 Garrod 20th Century
 Developed "Inborne Error of Metabolism"

Beadle & Tatum
 Developed one gene one enzyme concept

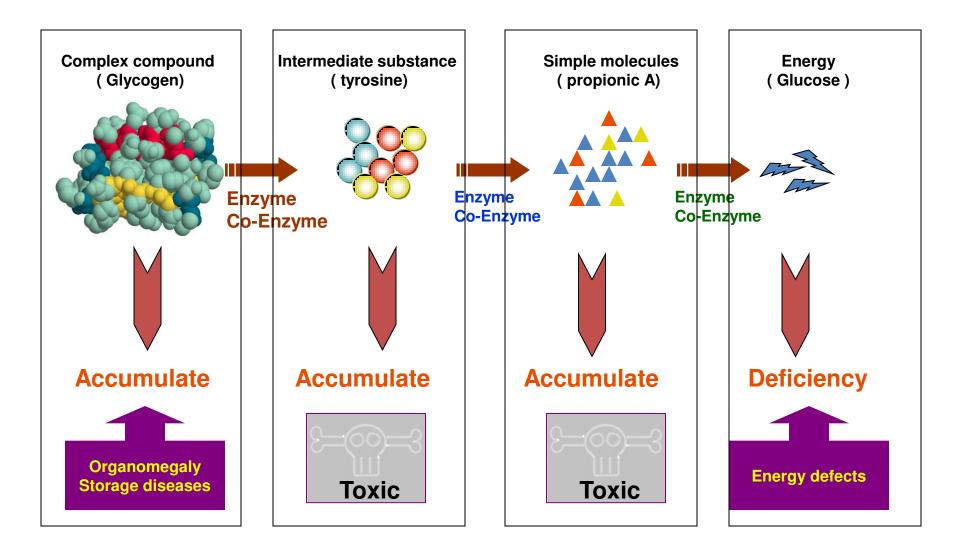
INBORN ERRORS OVERVIEW

General mechanism of problems


- Substrate accumulates to toxic levels
- Toxic byproducts produced from shunting of accumulated substrate
- Deficiency of end product
- Poor regulation results in overproduction of intermediates to toxic level

INBORN ERRORS OVERVIEW

- IEM are disorders in which there is a block at some point in the normal metabolic pathway
- IEMs occur due to mutations in DNA



BASIC IDEA,,,

- Need factors to break them
- Need close interactions
- Excess is like deficiency

BASIC IDEA,,,

WHAT IS A METABOLIC DISEASE?

Small molecule disease

- Carbohydrate
- Protein
- Lipid
- Nucleic Acids

Organelle disease

- Lysosomes
- Mitochondria
- Peroxisomes
- Cytoplasm

Types of Inborn Errors

- Protein Disorders
 - Amino Acid
 - Organic
 - Urea Cycle
- Carbohydrate Disorders
 - Galactose, Glucose transport, Glycogen, Fructose
- Fatty Acid Disorders
 - Medium chain acyl-CoA dehydrogenase def.
 - Long chain 3 hydroxycayl-CoA dehydrogenase def.

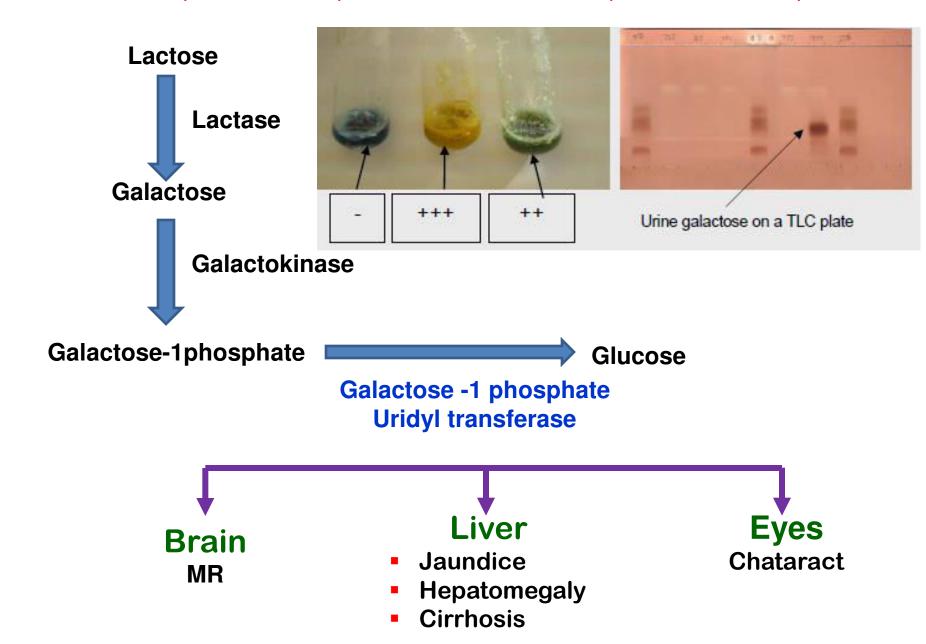
GENETIC CHARACTERISTIC AND MODE OF INHERITANCE

- > IEM are usually Autosomal recessive.
- > Consanguinity is always relatively common.
- > Some are x-linked recessive condition including:
 - Adrenoleukodystrophy.
 - Agammaglobulinemia.
 - Fabry's disease.
 - Granulomatous disease.
 - Hunter's Syndrome.
 - Lesch Nyhan Syndrome.
 - Menke's Syndrome.
- > A few inherited as Autosomal dominant trait including: porphyria, hyperlipedemia, hereditary angioedema.

INBORN ERRORS OF CARBOHYDRATE METABOLISM

Carbohydrates are important energy stores, fuels and metabolic intermediates

- Galactosaemia
- Hereditary fructose intolerance
- Glucose-6-phosphate dehydrogenase deficiency
- Glycogen storage diseases
- Pyruvate carboxylase deficiency
- Fructose-1,6-bisphophatase deficiency


GALACTOSEMIA

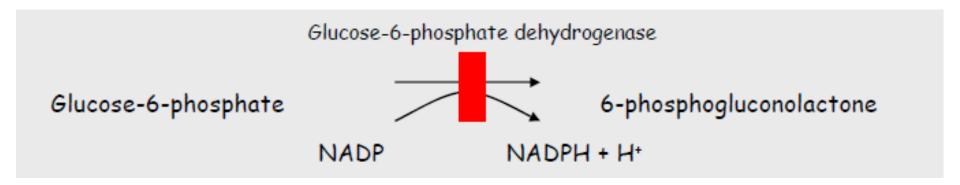
- Results from a disturbance in the conversion of galactose to glucose
- The enzyme deficiency causes an accumulation of galactose in body tissues
- Classic type lacks Galactose-1-phosphate uridyl transferase (GALT)
 - Galactokinase (GALK) deficiency results in infantile cataracts from accumulation of galacticol
 - Galactose epimerase (GALE) deficiency mostly confined to blood cells and most appear normal
- Estimated incidence 1/50,000 births

Galactosemia:

- First 1-2 wks of Life: Presents with <u>hypoglycemia</u>, <u>jaundice</u>, emesis.
- Secondary to intolerance of Galactose. Will be in baby's first meals of breast milk or lactose containing formulas.
- Also index of suspicion for <u>Gram Neg</u> or <u>E.coli</u> sepsis.
- Dx assisted by <u>Non-glucose</u> <u>reducing</u> <u>substances</u> in urine.
- Confirmation by Galactose-1-PO uridyl transferase activity in RBCs.
- Adverse sequelae include Cataracts, MR, persistent liver disease.

METABOLISM OF GALACTOSE

DISORDERS OF CH METABOLISM


HEREDITARY FRUCTOSE INTOLERANCE:

Fructose 1 phosphate aldolase deficiency

- Diagnosis: Fructose in Urine + Enzyme in the intestine mucosa and liver bx
- Clinical: Mild to sever
- Treatment: Diet restriction

GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY

This is an X-linked defect , irreversible step of the pentose phosphate pathway.

- Female heterozygotes may have symptoms but the severity varies due to non-random X chromosome inactivation)
- The highest frequency is in Mediterranean, Asian and Africans

GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY

- The most common manifestations are early neonatal unconjugated jaundice and acute hemolytic anemia. ly clinically asymptomatic in general.
- The hemolytic crises are usually in response to an exogenous trigger such as certain drugs (e.g. antimalarials), food (broad beans) or an infection
- The diagnosis is by measurement of the enzyme activity in erythrocytes

Metabolic Storage Disorders

Types,

- Glycogen storage diseases (GSD)
- Mucopolysaccharidosis (MPS)
- Lysosomal storage diseases or lipidosis (LSD)
- Mucolipidosis
- Peroxisomal diseases

Glycogen Storage Diseases (GSD)

Uridine-Diphosphoglucose

Glycogen synthetase

Glycogen

Straight chains

2 Brancher enzyme (GSD-IV)

Glycogen

Branched structure

Types.

- Hepatic/ muscle involvement (GSD-III)
- Isolated Hepatic involvement (GSD-I, IV & VIII)
- Isolated muscle involvement (GSD-V & VII)
- Multiple tissues (GSD-II & IV)

Limit dextrin+ Glucose-1-PO4

Debrancher enzyme

(GSD-III)

Glycogen (normal branch) + Glucose

4

Glucose-1-PO4

Glucose-6-phosphatase (GSD-1)

Glycogen Storage Disorders:

- Type 1= Von Gierke's:
 - Shortly after birth: Severe lifethreatening Hypoglycemia
 - Lactic acidosis –due to isolated glycolysis of G6Po
 - Hyper-uricemia, hyper lipidemia
 - Increased association with epistaxis
 - *Hepatomegaly
 - **Adverse response to Glucagon with worsening Lactic acidosis
- Management requires IV glucose, and then as output, close NG corn-starch or glucose solution administration to achieve close to nl glucose homeostasis.
- Frequent snacks and meals. Continuous nighttime glucose infusions up to the age of 2.

Glycogen Storage Disorders:

- Type 2- Pompe's disease:
- Normal Glucose
- Do to an accumulation of glycogen in lysosomes.
- **Ancient city of Pompeii was destroyed by Mt. Vesuvius- 79 AD**
- Manifested by massive Cardiomegaly, Hepatomegaly, Macroglossia.
- Fatal If results in CHF.
- Limited therapies in Neonatal Variant.
 - Attempts at enzyme replacement ongoing.

GLYCOGEN STORAGE DISEASES

Disorder (approximate % GSD cases)*	Enzyme defect	Most affected tissue(s)	Clinical Features	Diagnostic tests	Sample
65D II (Pompe's) (15%)	Lysosomal a1,4- glucosidase	Generalised; accumulation of glycogen in lysosomes	Infantile form: cardiomegaly, hypotonia; Juvenile & adult form: skeletal myopathy	Enzyme assay	Leucocytes (with inhibitor)
6SD III (24%)	Debranching enzyme	Liver & muscle (IIIa), liver only (IIIb); storage of large amounts of abnormal glycogen with short outer branches	Hepatomegaly, hypoglycaemia, hyperlipidaemia, growth retardation, muscle weakness	Enzyme assay (& red cell glycogen concentration)	Leucocytes
GSD IV (3.3%)	Branching enzyme	Liver; accumulation of glycogen with fewer branch points and longer chains (poor solubility)	Hepatosplenomegaly, failure to thrive, liver cirrhosis	Enzyme assay	Leucocytes

GLYCOGEN STORAGE DISEASES

Disorder	Enzyme defect	Most affected tissue(s)	Clinical Features	Diagnostic tests	Sample
GSD V McArdle's (2.4%)	Muscle phosphorylase	Muscle; Increased amount of glycogen (normal structure)	Exercise intolerance with muscle cramps	Mutation analysis for common mutations, Ischaemic lactate- ammonia test (and/or enzyme assay)	Blood DNA sample or Muscle biopsy for enzyme assay
GSD VI (see IX)	Liver phosphorylase	Liver; Increased amount of glycogen (normal structure)	Hepatomegaly, growth retardation, mild tendency to hypoglycaemia, mild hyperlipidaemia	Enzyme assay	Leucocytes
<i>G</i> SD VII (0.2%)	Phosphofructo kinase	Muscle, erythrocytes (excess glucose leads to increased formation of glycogen)	Exercise intolerance, haemolytic anaemia	Enzyme assay	Muscle biopsy
65D IX (30% VI + IX)	Phosphorylase b kinase (defect in one of 4 subunits)	Liver and/or muscle	As for GSD VI (functional deficiency of phosphorylase)	Enzyme assay	Erythrocytes for X- linked liver form (muscle biopsy for muscle form)

MUCOPOLYSACCHARIDSIS

Hetrogenous caused by reduced degradation of one or more of glycosminoglycans

Dermatan sulfate heparin sulfate

Keratan sulfate Chondritin sulfate

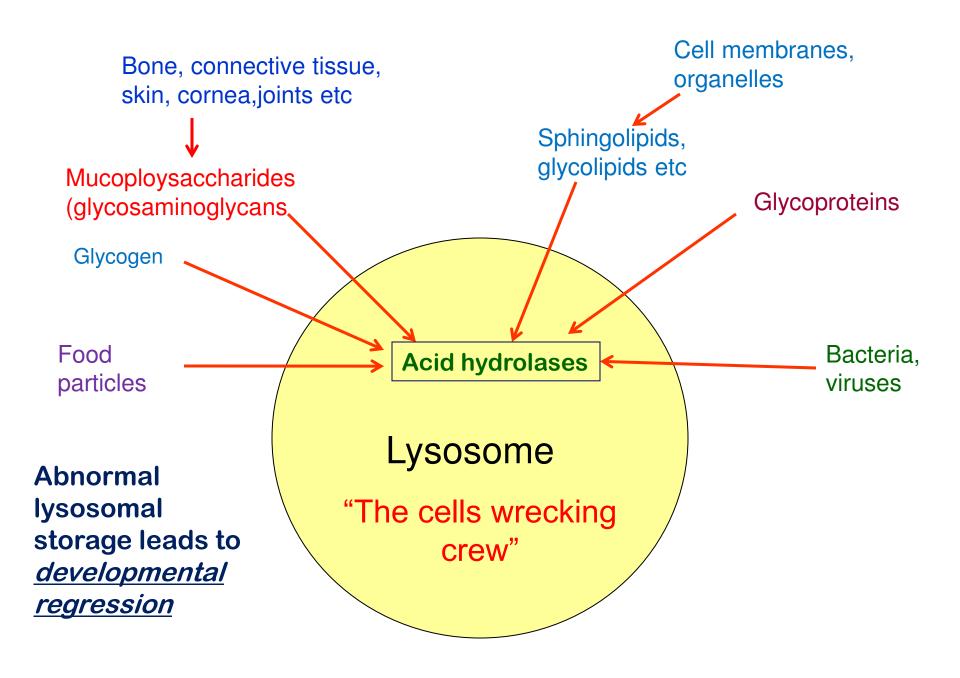
- MPS are the degradation products of proteoglycans found in the extracellular matrix
- 10 different enzyme deficienies
- Diagnosis
 - Clinical, Biochemical and Molecular analysis,
 - Meausrment of the enzyme in fibroblast, leukocytes, serum
 - Prenatal diagnosis on Amniocytes
 - Urine for MPS (heparan, keratan, dermatan)
- Genetics: All AR except Hunter syndrome X linked
- Clinical: Progressive multisystem deterioration causing:

MUCOPOLYSACCHARIDSIS

Symptoms & signs

- Developmental delay.
- Behavioral dysfunction
- Coarse facial features & other somatic features
- Cloudy cornea
- Abdominal distension (Hepatosplenomegaly)
- Dysostosis multiplex (Scoliosis and gibbous deformity)
- Hearing, Vision, Joint and Cardiovascular dysfunction

Types


- 1. Hunter syndrome
- 2. Hurler syndrome
- 3. Scheie syndrome
- 4. Sanfilippo syndrome
- 5. Morquio disease
- 6. Maroteaux-Lamy syndrome

Diagnosis: Enzyme detection

- $1.\alpha$ -idurondase
- 2. Iduronate Sulfatase
- 4. Heparan-N-Sulfatase
- 5. A:N-Galactosamine-6-sulfate sulfatase
- 5. B:β-glactosidase

LYSOSOMAL STORAGE DISORDERS

- Resulted from accumulation of substrate
- Deficiency or inability to activate or to transport the Enzymes within lysosomes that catalyses stepwise the degradation of:
 - Sphingolipids
 - Glycoproteins
 - Glycolipids
- May be it is a result of genetic drift and natural selection
- Children normal at birth, downhill course of differing duration

<u>Lysosomal Disorders</u> <u>Focus on key differences:</u>

Gaucher Disease:

- Infantile vs chronic juvenile
- Organomegaly
- Bone pain
- Easy bruisability
- **low Plts,
 osteosclerosis, and
 lytic bone lesions
- MNEUNOMIC="Clumsy Gaucho cowboy"

Tay-Sachs Disease:

- Progressive
 neurologic
 degeneration in first
 YOL and death by
 age 4-5 yo
- AR inheritance with classic Jewish Ashkenazi relationship.
- Increased startle reflex
- Cherry red macula
- Macrocephaly

SPHINGOLIPIDOSES

- Tay-Sachs disease AR Hexosaminidase -A
 - Developmental regression, Blindness,
 - Cherry-red spot, Deafness
- Gaucher's disease AR Glucosylcerarnide Type I
 - Joint and limb pains, Splenomegaly
- **β- Glucosidase Type II**

- Spasticity, fits; death
- Niemann-Pick disease AR Sphingomyelinase
 - Failure to thrive, Hepatomegaly
 - Cherry-red spot, Developmental

LIPIDOSES

Disease

- GM1 Gangliosidosis.
- GM2 Tay -Sach.
- Sandhoff disease.
- Niemann Pick disease.
- Gaucher's disease.
- Metachromatic Leukodystrophy.

Enzyme

 β - galactosidase

Hexosamindase A

Hexosamindase A+B

Sphingomylinase

Acidic - β - Glucosidase

Arylsulfatase A Neuronal ceroid lipofuscinosis

PEROXISOMAL DISORDERS

Zellweger Syndrome Cerebro-hepato-renal syndrome Clinical signs

- Typical and easily recognized dysmorphic facies.
- Progressive degeneration of Brain/Liver/Kidney, with death ~6 mo after onset.
- Hypotonic, seizures and poor feeding
- Distinctive facies.
- Retinal dystrophy,

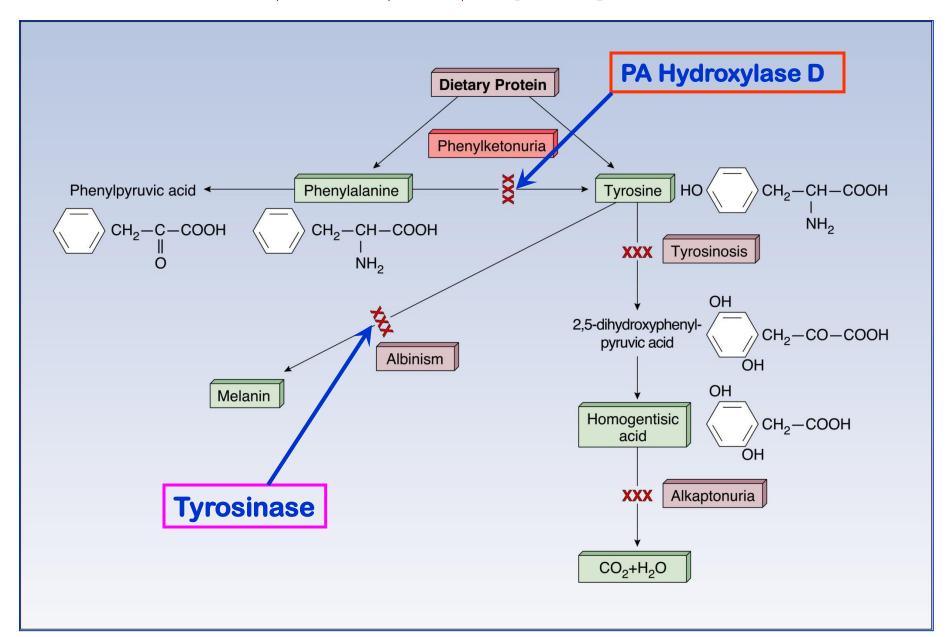
• hearing loss, severe DD

Diagnosis

- ➤ Biochemical, serum Very Long Chain Fatty Acids- VLCFAs
- Gene test

DISORDERS OF AA METABOLISM

- PHENYLKETONURIA
- ALKAPTONURIA
- OCULOCUTANEOUS ALBINIS
- HOMOCYSTINURIA
- BRANCHED AMINOACIDS


AMINO ACIDURIAS:

- Fresh Urine Uric acid and Sulfite Dipstick
 if neurologic abnormalities are present,
 low uric acid is suggestive for
 molybdenum cofactor deficiency and
 Sulfite Oxidase Deficiency.
- Don't forget <u>PKU</u>. Basic on newborn scrn, but only does good if results followed up.

PHENYLKETONURIA (PKU):

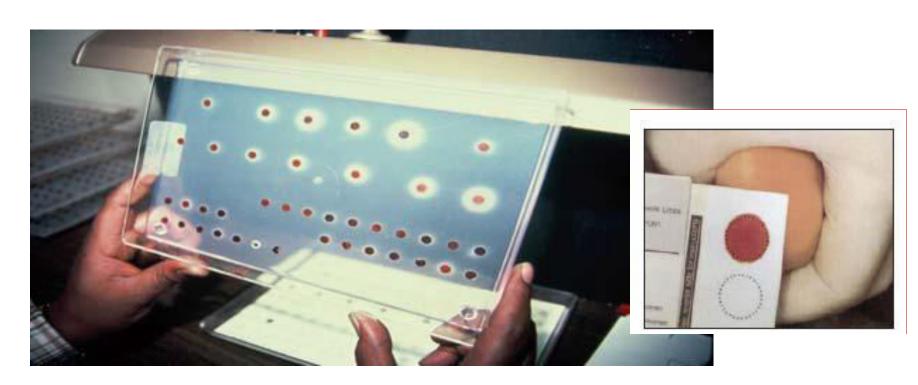
- Clinical features: Development delay in infancy, ?
 neurological manifestations such as seizures. hyper activity,
 behavioral disturbances, hyperpigmentation and MR.
- Incidence: 1/5000 -1/16000.
- Genetics: AR, 12q22-q24, >70 mutations (17 exsons)
- Basic Defect: Mutation in the gene of PA hydroxylase.
- Pathophysiology: PA or derivatives cause damage in the developing brain
- Treatment: Dietary reduction of phenylalanine within 4W
- Significance: Inborn Metabolic disorder, The first Dietary restriction treatment. Mass screening of newborns

PHENYLKETONURIA

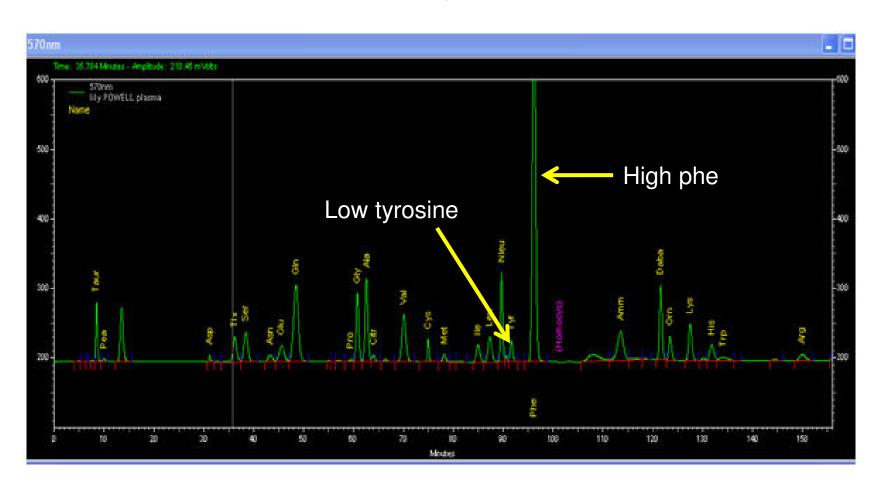
Types Of PKU

- PAH Deficient (97% of cases)
- Non-PAH Deficient (3% of cases)
 - Defects in tetrahydrobiopterin or other components in related pathways

 Dihydropteridin reductase or synthetase deficiency


DIAGNOSTIC CRITERIA

- Normal: 120 360 umol/L
- PAH Deficient:
 - Mild: 600 1200 umol/L
 - Classical: > 1200 umol/L
- Non-PAH Deficient:
 - < 600 umol/L</p>
- Guthrie Bacterial Inhibition Assay
- Confirmation of diagnosis, HPLC of Molecular


4/26/2015

GUTHRIE TEST-1961

1965 - Screening for PKU was mandated legislatively in most of the states in US

PLASMA AMINO ACID PROFILE, PKU

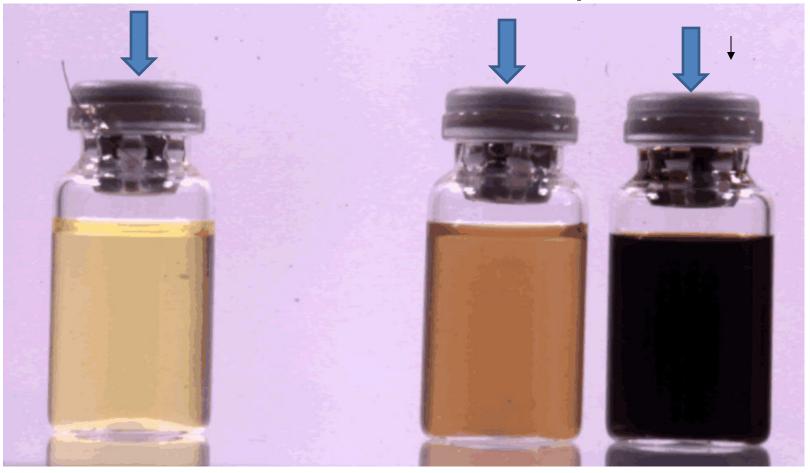
ALKAPTONURIA

- Autosomal Recessive described by Garrod
- Due to Homogenstic acid accumulation
- Excreted in Urine . Dark color in exposure to the air
- Dark pigment deposited in ear wax, cartilage and joints
- Deposition in joints known as Ochronosis in later life can lead to Arthritis

urine

Normal

alkaptonuria


ALKAPTONURIA

- Autosomal Recessive described by Garrod
- Due to Homogenstic acid accumulation
- Excreted in Urine . Dark color in exposure to the air
- Dark pigment deposited in ear wax, cartilage and joints
- Deposition in joints known as Ochronosis in later life can lead to Arthritis

Symptoms of alkaptonuria

Normal urine

Urine from patients with alkaptonuria

Patients may display painless bluish darkening of the outer ears, nose and whites of the eyes. Longer term arthritis often occurs.

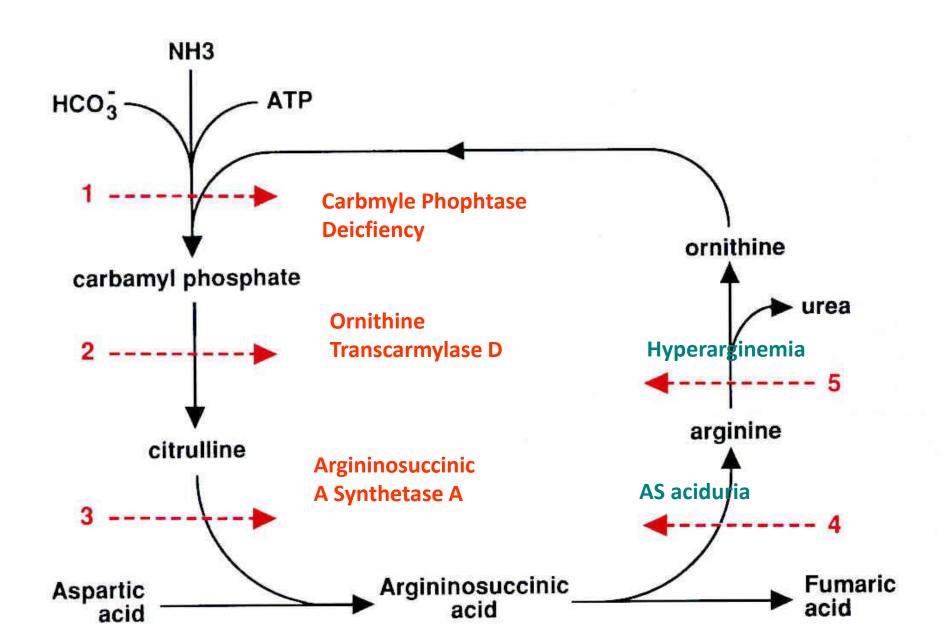
OCULOCUTANEOUS ALBINISM

- OCA is AR due to tyrosinase deficiency no melanine formation
- No pigment in skin, hair, iris and ocular fundus
- Nystagmus
- Genetically and bichemically heterogeneous
 - > Classical tyrosinase negative
 - > Tyrosinase positive, reduced enzyme level (type 1) OCA 1 located on chromosome11q.
 - > OCA 2 on chromosome 15q (pink-eye)
 - > Third loci OCA-3 not related to above mentioned

HOMOCYSTINURIA

Sulfur AA metabolism disorders due to Cystathionin β-synthetase

- Clinically: MR, fits, Thromboembolic episodes,
 Osteoporosis, tendency to lens dislocation, scoliosis,
 long fingers and toes
- Diagnosis: positive cyanide nitroprusside in urine confirmed by elevated plasma homocystine
- Treatment: diet with low methionine and cystine supplement
- Some are responsive to pyridoxine as
- a cofactor to the deficient enzyme

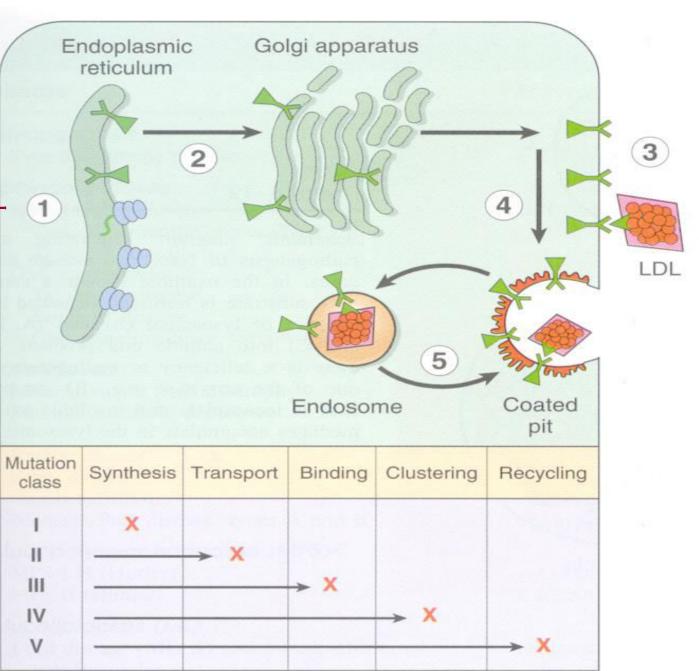

BRANCHED CHAIN AMINO ACIDS

- 40% of preformed AA used by mammalians are BCAA
 Valine, Leucine, Isoleuchin
- Energy supply through α -ketoacid decarboylase enzyme
- BCAA disease composed of 3 catalytic and 2 regulatory enzyme and encoded by 6 loci
- Deficiency in any one of these enzymes cause MSUD
- Untreated patients, accumulation of BCAAs cause neurodegeneration leads to death in the first few months of life
- Treatment BCAAs restriction diet
- Early detection
- Gene therapy ?????

UREA CYCLE DISORDERS

- UC main function to prevent accumulation of N₂ waste as urea
- UC responsible for de novo arginine synthesis
- UC consists of 5 major biochemical reactions, defects in humans:
 - Carpamyl phosphate synthetase (CPS), AR
 - ➤ Ornithin transcarbamylase (OTC), X-linked
 - Argininosuccinic acid synthatase (ASA),AR
 - > Argininosuccinase (AS), AR
 - ➤ N-acetyl glutamate synthetae (NAGS).AR

UREA CYCLE DISORDERS


Urea Cycle Defects:

- All but one of the disorders is autosomal recessive.
- Symptom free period and then emesis->lethargy-->>COMA
- Key features:
 - High Ammonia, low BUN
 - Possible Lactic acidosis
 - *Absence of ketonuria*
 - NI to mild low Glucose
- **Treat high ammonia, infuse glucose, send plasma AAs/OAs, urine orotic acid, and plasma citrulline.
- Infusion of 6ml/kg 10% Arginine HCl over 90 min may help.
- Milder forms may show episodic emesis, confusion, ataxia, and combativeness after <u>high protein meals</u>.

LIPID METABOLISM

- Backbone of phosopholipide and sphingolipids = biological membranes and hormones
- Intracellular messengers and energy substrate
- Hyperlipidemia, due to defective in lipid transport
- Fatty Acidemias is less common (fatty acid oxidation)
- FA mobilization from adipose tissue to cell = energy substrate in liver, skeletal and cardiac muscles
- FA transport across outer and inner mitochondrial membrane and entry into mitochondrial matrix
- Defects in any of these steps cause disease (Short, Medium & Long chain fatty acidemias)

LDL RECEPTOR
PATHWAY AND
REGULATION
OF CHOLESTEROL
METABOLISM

FATTY ACIDS

- 1. Long Chain
- 2. Medium Chain
- 3. Short Chain

FATTY ACID OXIDATION DEFECTS (AR)

- Examples are MCAD, LCAD, VLCAD
- Defect in acyl-CoA Dehydrogenase, a mitochondrial duty, and important in fasting state.
- KEY features:
 - Acute attack of life-threatening coma with <u>Hypoglycemia</u>
 - Absence of urine ketones, and reducing substances, nl serum AAs.
 - +/- mild acidosis, or hyperammonemia, elevated LFTs, abnl coags. +/-Hepatomegaly-/+
- Dx with serum <u>Acylcarnitine Profile</u> or <u>fibroblast enzyme</u> <u>assay</u>

ORGANIC ACIDEMIAS:

- Acidotic with high anion Gap
- Urine Ketones high
- High to normal Ammonia
- Often present <u>first 2-7 days</u> of life after dietary protein introduced.
- Drunk appearance in infant.
- May have low WBC and Plts.
- Check serum AAs/OAs, Urine AAs/OAs, CSF OAs/AAs.

ORGANIC ACIDEMIA,

DISORDERS OF OA

Disorder	Distinctive features
Propionic acidemia	Ketosis, acidosis, hyperamm neutropenia
Isovaleric acidemia	Sweaty feet odor, acidosis
Methylmalonic acidemia	Ketosis, acidosis, hyperamm neutropenia
3-methylcrotonyl -CoA carboxylase deficiency	Metabolic acidosis, hypoglycemia
HMG-CoA lyase deficiency	Reye syndrome, acidosis, hyperamm, hypoglycemia, no ketosis
Ketothiolase deficiency	Acidosis, ketosis, hypoglycemia
Glutaric acidemia type I	No acidosis; basal ganglia injury with movement disorder

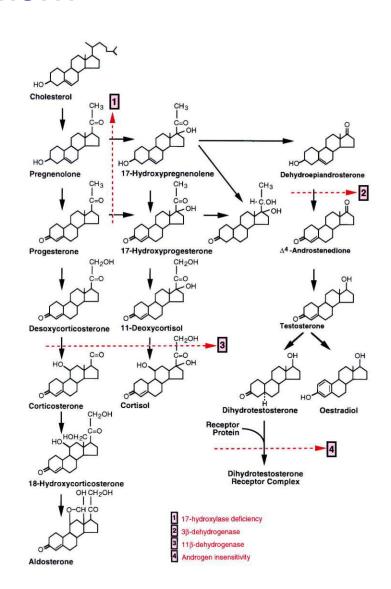
Purine/pyrimidine metabolism

•	 Lesch-Nyhan disease Hypoxanthine Guanine Phosphoribosyltransferase Deficiency Mental retardation, uncontrolled movements, } Uric Acid Crystals in CNS S58}elf-mutilation 	XR
•	 Adenosine deaminase deficiency Adenosine deaminase Deficiency Severe combined immunodeficiency 	AR
•	 Purine nucleoside phosphorylase Purine nucleoside Phosphorylase deficiency Severe viral infections due to impaired 	AR
•	 Hereditary orotic aciduria Orotate phosphoribosy Itransferase, Deficiency Orotidine 5'-phosphate Decarboxylase Deficiency Megaloblastic anaemia in the first year of life, Failure to thrive, 	AR

Copper Metabolism

- Wilson
 AR ATPase
 - membrane copper
 - Spasticity , Rigidity, Dysphagia, Cirrhosis
 - Transport protein ;
- Menkes' disease
 XR ATPase
 - membrane copper
 - Failure to thrive, Neurological deterioration
 - Transport protein

Steroid Metabolism


- Congenital adrenal hyperplasia AR
- Virilization (any new born female with ambiguous genitalia)

Salt-losing

- 21-hydroxylase Most common (90%)
- 11,13-hydroxy!ase,
- 3 13-dehydrogenase
- 17a-hydroxylase, very rare
- 17,20-lyase. Very rare

Testicular feminization

- Androgen receptor
- Female external genitalia,
- Male internal genitalia,
- Male chromosomes

Every child with unexplained . . .

- Neurological deterioration
- Metabolic acidosis
- Hypoglycemia
- Inappropriate ketosis
- Hypotonia
- Cardiomyopathy
- Hepatocellular dysfunction
- Failure to thrive
 - ... should be *suspected* of having a metabolic disorder

What to do for the Dying Infant Suspected of Having an IEM

- Autopsy--pref. performed within 4 hours of death
- Tissue and body fluid samples
 Blood, URINE, CSF (ventricular tap), aqueous humour, skin biopsy, muscle and liver--frozen in liquid nitrogen
- Filter paper discs from newborn screen--call lab and ask them not to discard

LABORATORY STUDIES FOR AN INFANT SUSPECTED OF HAVING AN INBORN ERROR OF METABOLISM

- Complete blood count with differential
- Urinalysis
- Blood gases
- Serum electrolytes
- Blood glucose
- Plasma ammonia
- Urine reducing substances
- Urine ketones if acidosis or hypoglycemia present
- Plasma and urine amino acids, quantitative
- Urine organic acids
- Plasma lactate

SUMMARY

MAJOR INBORN ERRORS OF METABOLISM PRESENTING IN THE NEONATE AS AN ACUTE ENCEPHALOPATHY

Disorders	Characteristic Laboratory Findings
Organic acidemias (includes MMA, PA,IVA, MCD and many less common conditions)	Metabolic acidosis with increased anion gap; variably elevated plasma ammonia and lactate; abnormal urine organic acids
Urea cycle defects	Variable respiratory alkalosis; no metabolic acidosis; markedly elevated plasma ammonia; elevated orotic acid in OTCD; abnormal plasma amino acids
Maple syrup urine disease	Metabolic acidosis with increased anion gap; elevated plasma and urine ketones; positive ferric chloride test; abnormal plasma amino acids
Nonketotic hyperglycinemia	No acid-base or electrolyte abnormalities; normal ammonia; abnormal plasma amino acids
Molybdenum co-factor deficiency	No acid-base or electrolyte abnormalities; normal ammonia; normal amino and organic acids; low serum uric acid; elevated sulfites in urine

Abbreviations: MMA, methylmalonic acidemia; PA, propionic acidemia; IVA, isovaleric acidemia; MCD, multiple carboxylase deficiency; OTCD, ornithine transcarbamylase **deficiency**.

Group I. Disorders involving COMPLEX me	olecules.			
Lysosomal disorders.	Glycoproteinosis , MPS, Sphingolipidosis .			
Peroxisomal disorders .	Zellweger syndrome & Variants , Refsum disease,.			
Disorders of intracellular trafficking & processing .	NPD-type C			
Disorders of Cholesterol synthesis	Wolman disease			
Group II. Disorders that give rise to INTOXICATION.				
Aminoacidopathies .	PKU, MSUD. Homocysteinuria, Tyrosinemia .			
Congenital Urea Cycle Defects .	CPT, OTC, Citrullinaemia, ASA. Arginase, NAGS deficiency .			
Organic acidemias .	Methylmalonic acidemia .Propionic acidemia . Isovaleric acidemia .Glutaric aciduria type I .			
Sugar intolerances .	Galactosemia .Heredietary Fructose intolerance			
Group III. Disorders involving ENERGY META	ABOLISM			
Glycogenoses (glycogen storage disease).				
Gluconeogesis defects .	Fructose 1,6-diphosphatase deficiency . Phosphoenolpyruvate carboxykinase .			
Congenital Lactic Acidemia .	Pyruvate Carboxylase deficiency . Pyruvate Dehydrogenase deficiency .			
Fatty Acid Oxidation defects .	VLCAD, MCAD , etc			
Mitochondrial respiratory-chain disorders .				

INBORN ERRORS OF METABOLISM ASSOCIATED WITH NEONATAL LIVER DISEASE AND LABORATORY STUDIES USEFUL IN DIAGNOSIS

Disorder Laboratory Studies

Galactosemia Urine reducing substances; RBC galactose-1-

phosphate uridyl transferase

Hereditary tyrosinemia Plasma quantitative amino acids; urine

succinylacetone a1-Antitrypsin deficiency

Quantitative serum a1-antitrypsin; protease inhibitor

typing

Neonatal hemochromatosis Serum ferritin; liver biopsy

Zellweger syndrome Plasma very long-chain fatty acids

N-Pick disease type C Skin biopsy for fibroblast culture; studies of

cholesterol esterification and accumulation

GSD type IV Liver biopsy for histology and biochemical

(brancher deficiency) analysis or skin biopsy with assay

of branching enzyme in cultured fibroblasts