

Delicio biology Pharmacology DPBL Oravin By Lawie Bushager ... Done By: Dr. Name Heyam Awad Liec # : 8

CNS 8/ tumors

Dr Heyam Awad FRCPath

CNS tumors

- $\frac{1}{2}$ $\frac{3}{4}$ are primary, the rest are metastatic.
- 20% of paediatric tumors

CNS tumors/ characteritics

- No premalignant or in situ stage
- Low grade lesions can be idly infiltrate with serious clinical deficit
- Anatomical site important in outcome regardless of type, grade
- Rarely spread outside CNS

CNS tumors

- <u>Gliomas</u>: astrocytoma, oligodendroglioma and ependymoma
- <u>neuronal tumors</u>: central neurocytom, ganglioglioma, dysembryoblastic neuroepithelial tumor.
- Embryonal neoplasms: medulloblastoma
- <u>Meningiomas</u>
- Primary CNS lymphoma
- Germ cell tumors
- Metastatic tumors

Gliomas/ tumors of glial cells

astrocytoma

- Several types.
- Most important: diffuse astrocytoma
 - : pilocytic astrocytoma

WHO classification

WHO designation	WHO grade
 pilocytic astrocytoma 	Ι
 Astrocytoma, well diff 	II
 anaplastic 	III
 glioblastoma 	IV

Diffuse astrocytoma

- 80% of adult gliomas.
- 40- 60 years of age
- Location: cerebral hemispheres
- Present with: seizures, headache, focal neurologic deficit
- Genetics: mutations in p53 and Rb genes

Diffuse astrocytoma

- Spectrum of histological differentiation:
- Well differentiated
- Analastic astrocytoma
- Glioblastoma

• Prognosis affected by grade

Well differentiated astrocytoma

- Can be static for several years
- But progress
- Mean survival is more than five years
- When progress: rapid deterioration + anaplastic histological features

glioblastoma

-Poor prognosis

-15 months survival even with aggressive treatment

-Can result due to progression from a previous astrocytoma or the tumor can start as glioblastoma

morphology

- Well differentiated: Poorly defined grey, infiltrative tumors that invade the brain without forming a discrete mass
- Glioblastoma: variation of the tumor appearance (multiforme); soft , necrotic and hemorrhagic areas.

Well diff astro

Mowell diff astrorphology

glioblastoma

glioblastoma

Microscopic features

- Well diff: mild to moderate increase in glial cells.
- Some nuclear pleomorphism
- Background: fibrillary due to fine astrocytic processes.. These are positive with glial fibrillary acidic protein (GFAP)

Well diff astro

Anaplastic astro

- More cellular than well diff astro.
- More pleomorphism
- Mitotic figures

Anaplastic astro

Glioblastoma multiforme

Looks like anaplastic plus

- Necrosis (usually pesudopalisading)
- or vascular proliferation

palisade

-high fence made of pointed stakes that was used in the past to protect a building or area
-palisades : a line of steep cliffs especially along a river or ocean

Glioblastoma/ palisaded nuclei around necrotic area

glioblastoma

Pilocytic astrocytoma

- Relatively benign
- In children and young adults
- Mostly: in cerebellum
- Can involve: third ventricle, optic pathway, spinal cord and rarely cerebral hemispheres

- Usually : cystic component.
- Recurrence of symptoms after incomplete excision: usually due to enlargement of the cystic component.
- Mutations: BRAF

morphology

- Solid and cystic components
- Solid: well defined

Microscopically:

- -bipolar cells with long GFAP positive processes
- -Rosenthal fibbers
- -eosinophilic granular bodies
- -microcysts
- -mitosis and necrosis are rare

Pilocytic astro

- Rosenthal fibres: thick ,elongated , eosinophilic protein aggregates seen in astrocytic processes.
- Can also be seen with chronic gliosis

Pilocytic/ microcysts

oligodendroglioma

- 5-15% of gliomas
- 40-50 years of age
- Cerebral hemispheres
- Better prognosis than astrocytoma of the same grade
- Well diff (WHO II): 10-20 years survival; with treatment
- Anaplastic (WHO III): 5-10 years survival; with treatment

genetics

- Deletions of chromosomes 1p and 19q.
- If this mutation present: highly responsive to chemo and radiotherapy

morphology

- Infiltrative, gelatinous masses
- Can have cysts, hemorrhage or calicifications
- Micro: sheets of regular cells with spherical nuclei, granular chromatin, clear cytoplasm, rare mitoses
- Anaplastic: more cellularity, more anaplasia and more mitosis.... Poorer prognosis

oligodendroglioma

oligo

Anaplastic oligo

• Dense cellularity

ependymoma

- Arise next to ventricles and central canal of spinal cord.
- First two decades of life: mostly near fourth ventricle
- Adults: mostly spinal cord

morphology

- Solid or papillary masses
- Regular round nuclei, granular chromatin, dense fibrillary bachground, rosette formation around canals, pseudo-rosetts around blood vessels
- Anaplastic ependymoma: cellular, mitosis, necrosis

Ependymoma/ rosettes

Ependymoma/ pseudorossetes

