

Mousa Suboh

Lipids

Dr. Mamoun Ahram Lecture 7 Summer 2013-2014

Resources

This lecture

Campbell and Farrell's Biochemistry, Chapter 8

Lipids

- Lipids are a heterogeneous class of naturally occurring organic compounds that share some properties based on structural similarities, mainly a dominance of nonpolar groups.
 - They are Amphipathic in nature.
- They are insoluble in water, but soluble in fat or organic solvents (ether, chloroform, benzene, acetone).
- They are widely distributed in plants & animals.

Classes

- Simple lipids (fats, oils, and waxes)
- Complex lipids (glycerides , glycerophospholipids, sphingolipids, glycolipids, lipoproteins)
- Derived lipids (fatty acids, alcohols, eicosanoids)
- Cyclic lipids (steroids)

Lipid Functions

- Lipids include:
 - Storage Lipids
 - Structural Lipids in Membranes
 - Lipids as Signals, Cofactors & Pigments
- Source of energy
 - They are storable to <u>unlimited amount</u> (vs. carbohydrates)
 - They provide considerable amount of <u>energy</u> to the body (25% of body needs) & provide a high-energy value (more energy per gram vs. carbohydrates & proteins)
- Structural components (cell membranes)
- Precursors of hormone and vitamins
- Shock absorbers thermal insulator

Fatty acids

- Aliphatic mono-carboxylic acids
- Formula: R-(CH₂)_n-COOH
- Lengths
 - Physiological (12-24)
 - Abundant (16 and 18)
- Degree of unsaturation
- Amphipathic molecules

Function:

- Building blocks of other lipids
- Modification of many proteins (lipoproteins)
- Important fuel molecules
- Derivatives of important cellular molecules

Types of fatty acids

Saturated fatty acids	
Short chain F.A. (1-6 carbons)	
Medium-chain F.A. (7-10 carbo	ons)
Long chain F.A.(more the 10 ca	rbon)
Unsaturated fatty acids	
Monounsaturated	
Polyunsaturated	

н-о о	H-O O	H-O O
N 77	N 77	N 77
c	c	с
n-C-n	n-c-n	n-c-n
і Н-С-Н	і Н-С-Н	і Н-С-Н
н-с-н	н-с-н	н-с-н
l I	I.	I.
H-C-H	H-C-H	H-C-H
н-с-н	н-с-н	н-с-н
і Н-С-Н	і Н-С-Н	і Н-С-Н
н-с-н	н-с-н	н-с-н
I.	I.	I.
H-C-H	H-C	H-C
н-с-н	н-с	H-C
і Н-С-Н	і Н-С-Н	і Н-С-Н
н-с-н	н-с-н	H-C
l I	I.	11
H-C-H	H-C-H	H-C
н-с-н	н-с-н	н-с-н
і Н-С-Н	і Н-С-Н	і Н-С-Н
1 1		
н-с-н	н-с-н	н-с-н
I.	I.	I.
H-C-H	H-C-H	H-C-H
н-с-н	н-с-н	н-с-н
н Н	і Н	I H
**	**	
Stearic	Oleic	Linoleic
Acid	Acid	Acid
1		

Cis vs. trans bonds

0

О

HO - C

HO - C -

Properties of fatty acids

The properties of fatty acids (melting point and solubility) are dependent on chain length and degree of saturation

Properties of fatty acids

Short chain F.A.	Medium-chain F.A.	Long chain F.A.
They are liquid in	Solids at room	Solids at room
nature	temperature	temperature
Water-soluble	Water-soluble	Water-insoluble
Volatile ar room	Non-volatile at room	Non-volatile &
temperature	temperature	
acetic, butyric, & caproic acids	Examples: caprylic & capric F.A.	Examples: palmitic, stearic, & lignoceric F.A
		Occur in hydrogenated oils, animal fats, butter & coconut & palm oils

Greek number prefix

Number	prefix	Number	prefix	Number	prefix
1	Mono-	5	Penta-	9	Nona-
2	Di-	6	Hexa-	10	Deca-
3	Tri-	7	Hepta-	20	Eico-
4	Tetra-	8	Octa-		

Naming of a fatty acid

- Alkane to oic
 - Octadecane (octa and deca) is octadecanoic acid
 - One double bond = octadecenoic acid
 - Two double bonds = octadecadienoic acid
 - Three double bonds = octadecatrienoic acid
 - Designation of carbons and bonds
 - 18:0 = a C18 fatty acid with no double bonds
 - stearic acid (18:0); palmitic acid (16:0)
 - 18:2 = two double bonds (linoleic acid)
- Designation of location of bonds
 - Δⁿ: The position of a double bond
 - \odot cis- Δ^9 :a cis double bond between C 9 and 10
 - \odot trans- Δ^2 :a trans double bond between C 2 and 3

Number of carbons	Number of double bonds	Common name	Systematic name	Formula
14	0	Myristate	n-Tetradecanoate	$CH_3(CH_2)_{12}COO^-$
16	0	Palmitate	n-Hexadecanoate	CH ₃ (CH ₂) ₁₄ COO-
18	0	Stearate	n-Octadecanoate	CH ₃ (CH2) ₁₆ COO-
18	1	Oleate	cis-Δ ⁹ -Octadecenoate	$CH_3(CH_2)_7CH=CH(CH_2)_7COO-$
18	2	Linoleate	cis,cis-∆ ⁹ ,∆ ¹² - Octadecadienoate	CH ₃ (CH ₂) ₂ (CH=CHCH ₂) ₂ (CH ₂) ₆ COO-
18	3	Linolenate	all-cis-∆ ⁹ ,∆ ¹² ,∆ ¹⁵ - Octadecatrienoate	$CH_3CH_2(CH=CHCH_2)_3(CH_2)_6COO-$
20	4	Arachidonate	all-cis-∆ ⁵ ,∆ ⁸ ,∆ ¹¹ ,∆ ¹⁴ - Eicosatetraenoate	CH _{3 (} CH ₂) ₄ (CH=CHCH ₂) ₄ (CH ₂) ₂ COO-

Another way of naming

(ω)-C: distal methyl C as #1

- Linoleic acid: precursor of arachidonates
- Linolenic acid: precursor of EPA and DHA

Numerical Symbol	Common Name and Structure	Comments
18:1 ^{∆9}	Oleic acid	Omega-9 monounsaturated
18:2 ^{∆9,12}	Linoleic acid	Omega-6 polyunsaturated
18:3 ^{49,12,15}	α -Linolenic acid (ALA) $\omega \xrightarrow{15}_{6} \xrightarrow{12}_{9} \xrightarrow{9}_{6} \xrightarrow{\alpha}_{C-OH}$	Omega-3 polyunsaturated
20:4 ^{Δ5,8,11,14}	Arachidonic acid	Omega-6 polyunsaturated
20:5 ^{Δ5,8,11,14,17}	Eicosapentaenoic acid (EPA) $\omega \xrightarrow{17}_{6} \xrightarrow{14}_{9} \xrightarrow{11}_{9} \xrightarrow{5}_{0} \xrightarrow{\alpha}_{0} \xrightarrow{-OH}_{0}$	Omega-3 polyunsaturated (fish oils)
22:6 ^{Δ4,7,10,13,16,19}	Docosahexaenoic acid (DHA) $\omega \xrightarrow{19}_{6} \xrightarrow{16}_{9} \xrightarrow{10}_{7} \xrightarrow{7}_{4} \xrightarrow{0}_{\alpha} \xrightarrow{0}_{-OH}$	Omega-3 polyunsaturated (fish oils)

Derived fatty acids: Ecosanoids

Arachidonate

all *cis*- Δ^5 , Δ^8 , Δ^{11} , Δ^{14} -eicosatetraenoate, $CH_3(CH_2)_4(CH=CHCH_2)_4(CH_2)_2COO$ -

Eicosanoids and their functions

Prostaglandins

- Inhibition of platelet aggregation
 - Blood clotting

Leukotrienes

- Constriction of smooth muscles
 - Asthma
- Thromboxanes
 - Constriction of smooth muscles
 - Platelet aggregation
- Prostacyclins
 - An inhibitor of platelet aggregation
 - A vasodilator

Aspirin and the heart

- Thromboxane A2 leads to platelet activation and aggregation.
- Aspirin acts as a potent antiplatelet agent by inhibiting cyclooxygenase preventing thromboxane A2 (TXA2) generation.

Aspirin

- Aspirin is anti-inflammatory and fever-reducing (antipyretic).
- It irreversibly inhibits cyclooxygenase (COX), the enzyme that catalyzes conversion of arachidonic acid to prostaglandins.

Targets of Aspirin

Arachidonic Acid Cyclooxygenase is present in two forms in cells, COX-1 and COX-1 COX-2 COX-2. Aspirin targets both, Inhibition Inhibition but COX-2 should only undesirable desirable be the target. Homeostatic functions Inflammation

> Gastrointestinal tract Renal tract Platelet Function Macrophage differentiation

Celebrex

A new generation drug, Celebrex, targets COX2, but is prescribed with a strong warning of side effects on the label.

Omega fatty acids

- Omega-3 fatty acids
 - α -linolenic acid \rightarrow eicosapentaenoic acid (EPA) \rightarrow docosahexaenoic acid (DHA)
 - They reduce inflammatory reactions by:
 - Reducing conversion of arachidonic acid into eicosanoids
 - Promoting synthesis of anti-inflammatory molecules
- Omega-6 fatty acids:
 - Arachidonic acid
 - stimulates platelet and leukocyte activation,
 - signals pain,
 - Induces bronchoconstriction,
 - regulates gastric secretion
- Omega-9 fatty acids
 - Oleic acid
 - Reduces cholesterol in the circulation

Complex lipids

Triglycerides

Types of glycerides

Tristearin a simple triglyceride

a mixed triglyceride

How soluble will a triglyceride be if fatty acids are unsaturated?

Solid vs. liquid fats

- Vegetable oils consist almost entirely of unsaturated fatty acids, whereas animal fats contain a much larger percentage of saturated fatty acids.
 - This is the primary reason for the different melting points of fats and oils

Saponification

- Hydrolysis : steam, acid, enzyme (e.g., lipase of pancreas)
- Saponification: Alkaline hydrolysis produces salts of fatty acids (soaps). Soaps cause emulsification of oily material

How does soap work?

- When mixed with water, the hydrophobic hydrocarbon tails cluster together to create a nonpolar microenvironment and the hydrophilic ionic heads interact with water.
- The resulting spherical clusters are called micelles.
- Grease and dirt are trapped inside micelles and the complex can be rinsed away.

Hydrogenation

The carbon-carbon double bonds in vegetable oils can be hydrogenated to yield saturated fats in the same way that any alkene can react with hydrogen to yield an alkane.

Trans fat

- Although the animal fat is unhealthy, it has better cooking properties and better taste.
- Therefore, chemists invented a method of converting unsaturated fat into solid form by partially hydrogenating it.
- Partial hydrogenation converts some, but not all, double bonds into single bonds generating (trans fats).

Example: margarine

In margarine, only about two-thirds of the double bonds present in the starting vegetable oil are hydrogenated, so that the margarine remains soft in the refrigerator and melt on warm toast.

Nutrition	Amount/Serving	% DV*	Amount/Serving	% DV*
Facts Serv Size 1 Tbsp (14g) Servings: About 24 Calories 80 Calories from Fat 80	Total Fat 8g	12%	Cholesterol On	ng 0%
	Sat Fat 2.5g	13%	Sodium 85mg	4%
	Trans Fat 0g		Total Carb Og	0%
	Polyunsat Fat	3g	Sugars 0g	
	Monounsat Fa	t 2.5g	Protein Og	
	Vitamin A 15% • Vitamin D 15%			
*Percent Daily Values (DV) are	Vitamin B6 35% • Vitamin B12 20% • Vitamin E 15%			
based on a 2,000 calorie diet.	Not a significant source of dietary fiber, Vitamin C, Calcium and Iron			

INGREDIENTS: Natural Oil Blend (palm fruit, soybean, fish, canola and olive oils), water, plant sterols; contains less than 2% of salt, sorbitan esters of fatty acids, monoglycerides of vegetable fatty acids, natural and artificial flavors, TBHQ (to preserve freshness), potassium sorbate, lactic acid, soy lecithin, vitamin B12, vitamin E acetate, vitamin B6, beta carotene (color), vitamin A palmitate, calcium disodium EDTA, Vitamin D3.

Chemical Properties of fats & oils

- Halogenation: added to unsaturated F.A (e.g., iodination)
 - Used to determine the degree of unsaturation of the fat or oil that determines its biological value

Acrolin test

- When fats are heated in the presence of a dehydrating agent, NaHSO4 or KHSO4, they produce unsaturated aldehydes called acrolin from the glycerol moiety.
- Acrolin easily recognized by its strong odour and thus forms the basis of the test for the presence of glycerol in fat molecule.

Waxes

Palmitic acid

- Triacontanol
- Solid simple lipids containing a monohydric alcohol (C16 ~ C30, higher molecular weight than glycerol) esterified to long-chain fatty acids (C14 ~ C36). Examples: palmitoyl alcohol
- Insoluble in water & Negative to acrolein test
- Are not easily hydrolyzed (fats) & are indigestible by lipases
- Are very resistant to rancidity
- Are of no nutritional value
- Coatings that prevent loss of water by leaves of plants

Туре	Structural Formula	Source	Uses
Beeswax		Honeycomb	Candles, shoe polish, wax paper
Deesmar	0 	Honeycomb	Cultures, shoe polish, wax paper
Carnauba wax	CH ₃ (CH ₂) ₂₄ — C — O — (CH ₂) ₂₉ CH ₃ O	Brazilian palm tree	Waxes for furniture, cars, floors, shoes
Jojoba wax	$CH_3(CH_2)_{18} - C - O - (CH_2)_{19}CH_3$	Jojoba	Candles, soaps, cosmetics

Membrane lipids

The most prevalent class of lipids in membranes is the glycerophospholipids

Phospholipids (phosphoacylglycerols)

Classification of Glycerophospholipids

- Phosphatidic acids
- Phosphatidylcholine (lecithins)
 - Most abundant membrane lipid
- Cephalins
 - Phosphatidylethanolamine
 - Phosphatidylserine
 - abundant in brain
- Phosphatidylinositol
 - sends messages across cell membranes
- Cardiolipin
- Plasmalogens

Glycerophospholipids - Lecithins

Phosphatidylcholine

Choline

- Snake venom contain lecithinase, which hydrolyzes polyunsaturated fatty acids and converting lecithin into lysolecithin
 - hemolysis of RBCs

Emulsification

Because of their amphipathic nature, they act as emulsifying agents, that is substances that can surround nonpolar molecules and keep them in suspension in water

= fatty acid

Glycerophospholipids - Cardiolipins

- Diphosphatidyl-glycerol
- Found in the inner membrane of mitochondria
- Initially isolated from heart muscle (cardio)
- Structure: 3 molecules of glycerol, 4 fatty acids & 2 phosphate groups

Plasmalogens

- They are found in the cell membrane phospholipids fraction of brain & muscle, liver, and semen.
- They have a protective role against reactive oxygen species
- Structure:
 - Precursor: Dihydroxyacetone phosphate
 - Unsaturated fatty alcohol at C1 connected by ether bond
 - In mammals: at C3; phosphate + ethanolamine or choline

$$H_{2}C - \frac{O - C = C - R_{1}}{O}$$

$$HC - O - C - R_{2}$$

$$H_{2}C - \frac{O - C - R_{2}}{O}$$

$$H_{2}C - \frac{O - C - R_{2}}{O} - CH_{2} - CH_{2} - N^{\dagger}(CH_{3})_{3}$$

н н-с-о-р с=о но-с-н н

Dihydroxyacetone phosphate

Major classes of plasmalogens

- Ethanolamine plasmalogen (myelin-nervous tissues)
- Choline plasmalogen (cardiac tissue)
 - Platelet activating factor
- Serine plasmalogens

Glycerophospholipids - Inositides

- Phosphatidyl inositol
- Nitrogenous base: cyclic sugar alcohol (inositol)
- Structure: glycerol, saturated FA, unsaturated FA, phosphoric acid, & inositol
- Source: Brain tissues

Functions:

- Major component of cell membrane
- Second messenger during signal transduction
- On hydrolysis by phospholipase C, phosphatidyl-inositol-4,5diphosphate produces diacyl-glycerol (DAG) & inositoltriphosphate (IP3); which liberates calcium

The different structures of phospholipids

Sphingolipids

- Sphingolipids are found in the plasma membranes of all eukaryotic cells and is highest in the cells of the central nervous system
- The core of sphingolipids is the <u>long-chain amino</u> <u>alcohol</u>, <u>sphingosine</u>

Ceramide

Types of sphingolipids

- The sphingolipids are divided into the two subcategories:
 - Sphingomyelins
 - Glycosphingolipid (or glycolipids)

Sphoingomyelin

- Sphoingomyelin is a sphinglolipid that is a major component of the coating around nerve fibers
- The group attached to C1 is a phosphocholine

Glycolipids

- Sphingolipids can also contain carbohydrates attached at C-1 and these are known as glycolipids
- Glycolipids are present on cell membranes and act as cell surface receptors that can function in cell recognition (e.g., pathogens) and chemical messengers
 - There are three types of glycolipids
 - Cerebrosides
 - Globosides
 - Gangliosides

Glycolipids

sphingosine

- Cerebrosides: the simplest glycolipids, contain a single hexose (galactose or glucose).
- Globosides and gangliosides are more complex glycolipids.
- Both contain glucose, galactose, and N-acetylgalactosamine, but glycolipidsgangliosides must also contain sialic acid.

Gangliosides are targeted by cholera toxin in the human intestine.

CH₃(CH₂)₁₂-CH=CH-CHOH

CH3(CH2)n-C-NH-CH

O

CH2-O-R

Sphingolipid type

Sulfatides

- Synthesized from galactocerebroside
- Abundant in brain myelin

Sphingolipids and blood groups

Lipoproteins

Density, g/ml

As lipid content increases, the density decreases

Features of lipoproteins

	The	
		(
	(OP)	
		/
and the second sec		

	Chylomicrons	VLDL	LDL	HDL
Density (g/ml)	< 0.94	0.94-1.006	1.006-1.063	1.063-1.210
Diameter (Å)	6000-2000	600	250	70-120
Total lipid (wt%) *	99	91	80	44
Triacylglycerols	85	55 Liver	10	6
Cholesterol esters	3	18	50 (bad)	40 (good)
Function	Transport of <u>dietary</u> TG	Transport of liver TG	Transport of cholesterol to peripheral tissues	Transport of cholesterol from peripheral tissues (cholesterol scavengers)

Steroids

The precursor

 CH_3 $CH_2 = CH_2 - CH = CH_2$ Isoprene

The most common steroid

The nucleus

Steroid nucleus

Products of cholesterol

Cholesterol esters

A cholesterol with a fatty acid attached at (-OH) of C3

Atherosclerosis

Normal Coronary Artery with Normal blood flow

Cholestrol Deposition in Coronary Artery with Impaired blood flow

Cell membranes

- The membrane is hypothesized in a model known as the fluid mosaic model.
- Components: 45% lipid, 45% protein and 10% carbohydrate
- They exist side by side without forming some other substance of intermediate nature.

Phospholipids

- The outer: phosphatidylcholine, sphingomyelin, and glycolipids(cell recognition)
- The inner: phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol (signaling)

Cholesterol is distributed in both leaflets

Animal cells vs. plant cells vs. prokaryotic cells

Fatty acids and membrane fluidity

Membrane fluidity and temperature

Inc. temp.

Dec. temp.

Very regular, Ordered structure Less tightly packed, Hydrocarbon tails Disordered.

Cholesterol and membrane fluidity

- The presence of cholesterol stabilizes the extended straight-chain arrangement of saturated fatty acids by van der Waals interactions.
- Cholesterol makes a membrane less solid at low temperatures and more solid at high temperatures.

It decreases the mobility of hydrocarbon tails of phospholipids.
It interferes with close packing of fatty acid tails in the crystal state.

Membrane proteins

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Types of membrane proteins

Peripheral proteins:

are associated with the exterior of membranes via noncovalent interactions

Integral membrane proteins:

anchored into membrane via hydrophobic regions

Lipid-anchored:

associated via a lipid group

Peripheral membrane proteins

- They are associated with membranes but do not penetrate the hydrophobic core of the membrane
 - often associated with integral membrane proteins
- They are not strongly bound to the membrane and can be removed without disrupting the membrane structure
 - treatment with mild detergent

Integral membrane proteins

The integral proteins can be associated with the lipid bilayer in several ways.

The membrane integral domains are: 1. Single or multiple

3

2. α -helix or β -sheet

Some can form channels

Lipid-anchored membrane proteins

Four types have been found:

- Amide-linked myristoyl anchors
 - Always myristic acid
- Thioester-linked fatty acyl anchors
 - myristate, palmitate, stearate, oleate
- Thioether-linked prenyl anchors
 - Prenylation refers to linking of "isoprene"-based groups
- Glycosyl phosphatidylinositol anchors
 - Ethanolamine links to an oligosaccharide linked in turn to inositol of PI

Structure-Function of Membranes

Transport:

- Membranes are impermeable barrier
- Proteins can be carriers or channels
- Signaling
 - Protein receptors and small molecules (some can be lipids themselves)
- Catalysis
 - Enzyme-linked receptors

Vitamins

Vitamin A

Vision

•The outer segment of rod cells contains flat membrane enclosed discs, the membrane consisting of about 60% rhodopsin and 40% lipid.

How viscous is membrane of rod cells?

Vitamin D

•Vitamin D3 increases synthesis of a Ca2+-binding protein, which increases the absorption of dietary calcium in the intestines and calcium uptake by the bones.

Vitamin E

 Vitamin E is a good reducing agent and an antioxidant (it reacts with oxidizing agents before they can attack other biomolecules).

Vitamin K

A state of the sta

The bicyclic ring system contains two carbonyl groups and a long unsaturated hydrocarbon side chain that consists of repeating *isoprene* Units.

Biological function of vitamin K

- Constants
- Vitamin K is important in the carboxylation of glutamate producing γ-carboxyglutamate residues in the prothrombin protein.
- The two carboxyl groups bind Ca2+ ion form a bidentate ("two teeth") ligand, which is required for blood clotting.
- Two well-known anticoagulants, dicumarol and warfarin (a rat poison), are vitamin K antagonists.

