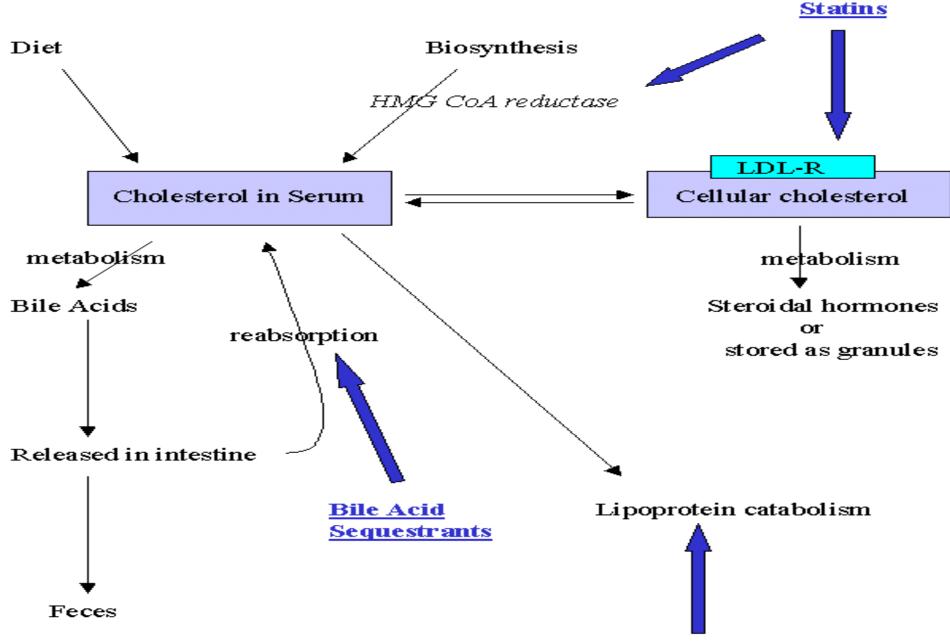
Antihyperlipidemic Drugs

Hyperlipidemias.

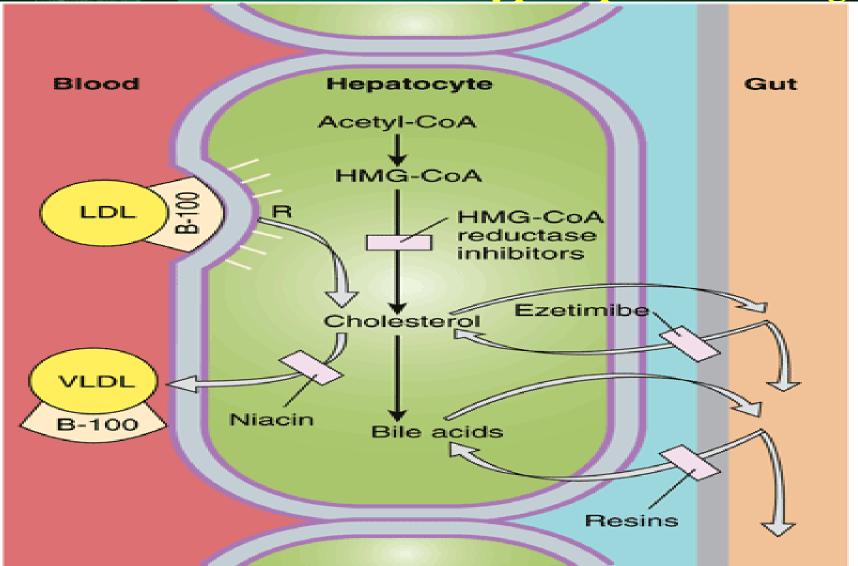
Hyperlipoproteinemias.

Hyperlipemia.


Hypercholestrolemia.

Direct relationship with acute pancreatitis and atherosclerosis.

TYPE	ORIGIN	MAJOR LIPIDS	MAJOR APOLIPOPROTEINS	CATABOLISM
Chylomicrons	Intestine	85% Triglyceride	B48, AI, AIV, E, CI, CII, CIII	Hydrolysis of triglyceride (lipoprotein lipase)
Chylomicron remnants	From chylomicrons	40–60% Triglyceride	B48, AI, AIV, E, CI, CII, CIII	Uptake by liver (apoE via LDL receptor)
VLDL	Liver	20% Cholesterol	B100, E, CI, CII, CIII Hydrolysis of triglyceride (lipoprote lipase) to IDL; direct uptake by live (apoE and B100 via LDL receptor)	
		55% Triglyceride		1 /
		20% Cholesterol	D100 F CI CII CIII	→ LDL (hepatic lipase)
IDL			B100, E, CI, CII, CIII	→ Liver (apoE and B100)
LDL	From VLDL and liver	35% Cholesterol 25% Triglyceride	B100, E, CI, CII, CIII	Uptake: liver (apoB100 via LDL receptor)
HDL	From IDL and liver Liver, intestine, and plasma	60% Cholesterol 5% Triglyceride	AI, AII, CI, CII, CIII, E	1. Uptake of cholesterol ester by hepatocytes (SR-B1)
HDL		35% Phospholipid		2. Transfer of cholesteryl ester (CETP) to LDL, IDL, and VLDL
		20% Cholesterol 5% Triglyceride		3. Lipolysis of TG and CE by hepatic lipase and uptake by liver
Nov-15				4. Clearance of HDL particle by liver and kidney


Table 35–3 Secondary Causes of Hyperlipoproteinemia.				
Hypertriglyceridemia	Hypercholesterolemia			
Diabetes mellitus	Hypothyroidism			
Alcohol ingestion	Early nephrosis			
Severe nephrosis	Resolving lipemia			
Estrogens	Immunoglobulin-lipoprotein complex disorders			
Uremia	Anorexia nervosa			
Corticosteroid excess	Cholestasis			
Myxedema	Hypopituitarism			
Glycogen storage disease	Corticosteroid excess			
Hypopituitarism				
Acromegaly				
Immunoglobulin-lipoprotein complex disorders				
Lipodystrophy				
Protease inhibitors Munir Gharaibeh,	MD, PhD, MHPE 3			

Control of Hyperlipidemia

Fibrates

Sites of Action of Antihyperlipidemic Drugs

Source: Katzung BG, Masters SB, Trevor AJ: *Basic & Clinical Pharmacology, 12th edition*: www.accessmedicine.com

Niacin

- V Nicotinic Acid or Vitamin B3, is one of the oldest drugs.
- **∀** Water- soluble B-complex vitamin, functions only after conversion to NAD or NADP+ Nicotinamide.
- **▼ Niacin has hypolipidemic effects in large doses.**
- **∀** Affects all lipid parameters:
 - Best agent to increase HDL-C(35-40%).
 - Lowers triglycerides (35-45%).
 - Decreases LDL-C production(20-30%).
- **Reduces** fibrinogen levels.
- **▼ Increases plasminogen activator,**

Niacin

Mechanism of Action:

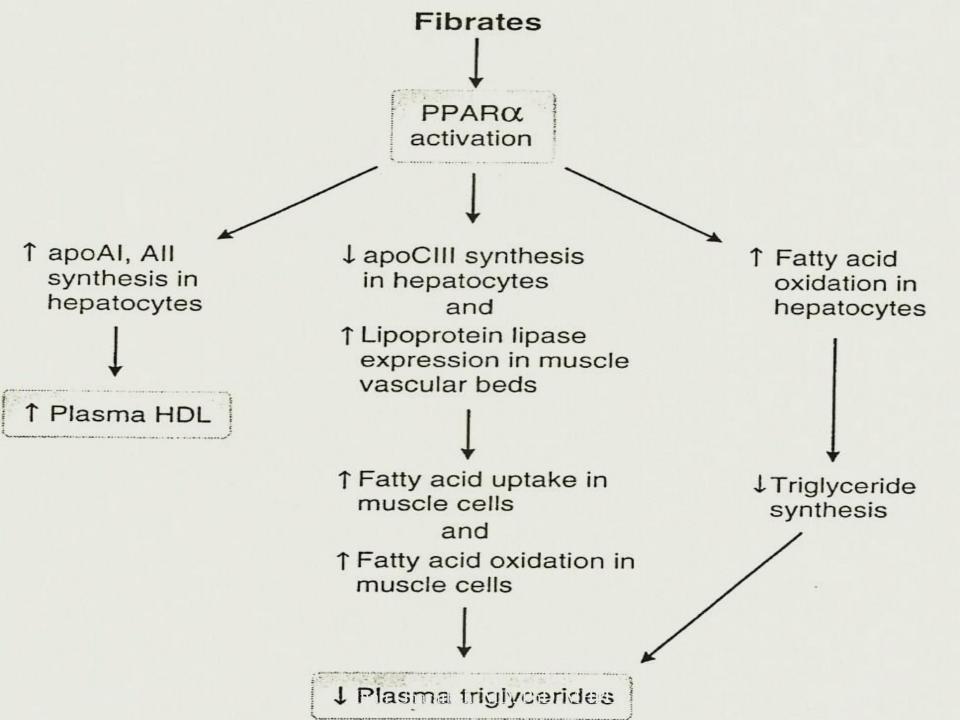
- **✓** In adipose tissue, inhibits the lipolysis of triglycerides by inhibiting adipocyte adenylyl cyclase, which reduces transport of free fatty acids to the liver and decreases hepatic triglyceride synthesis.
- **∀** May also inhibit a rate —limiting enzyme of triglyceride synthesis, diacylglycerol acetyltransferase 2.
- ▼ Completely absorbed, peaks within 1hr, half-life is about 1 hr, so need to be given by twice or thrice daily administration.

Niacin

Toxicity:

- **∀** Harmless cutaneous vasodilation and sensation of warmth.
- **∀ Pruritus, rashes, dry skin or mucus membranes** (acanthosis nigricans).
- **∨** Nausea, vomiting, abdominal discomfort, diarrhea.

Acanthosis Nigricans



Fibrates or Fibric Acid Derivatives or "PPARs Activators"

- **✓ Clofibrate, 1962-1987.**
- **∀** Gemfobrozil.
- **∀** Fenofibrate.
- **∀** Bezafibrate.
- **Stimulate PPAR-** α (Peroxisome Proliferator Activated Receptor- α) which stimulates fatty acid oxidation, increases LPL synthesis, and reduces expression of apo C-III, and increases apoA-I and apoA-II expression.
- **∀** Also have anticoagulant and fibrinolytic activities.
- **∀** Drugs of choice in severe hypertriglyceridemia.

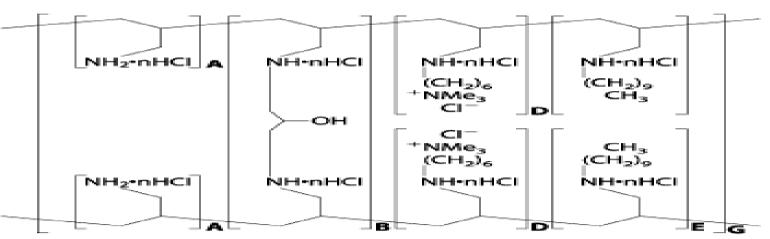
Fibrates

Toxicity:

∀Rashes, urticaria, hair loss, headache, GIT symptoms, impotence, and anemia.

- **∀Myalgia**, fatigue, myopathy and rhabdomyolysis.
- (Breakdown of muscle fibers resulting in the release of muscle fiber contents (myoglobin) into the blood stream).

▼ Elevated transaminases or alkaline phosphatase.


Bile Acid —Binding Resins

- **∨** Colestipol.
- **∨** Chlestyramine.
- **∀** Colesevelam.
- These are large polymeric anionic- exchange resins, insoluble in water, which bind the negatively charged bile acids in the intestinal lumen and prevent their reabsorption leading to depletion of bile acid pool and increased hepatic synthesis.
- **▼ Consequently, hepatic cholesterol content is decreased, stimulating the production of LDL receptors. This leads to increased LDL clearance and lowers LDL-C levels.**
- ✓ However, this effect is partially offset by the enhanced cholesterol synthesis caused by upregulation of HMG-

Cholestyramine

Colestipol

Colesevelam

A = Primary Amines

B = Cross-linked Amines

D = Quaternary Ammonium Alkylated Amines

E = Decyalkylated Amines

n = Fraction of Protonated Amines

G = Extended Polymeric Network

Source: Brunton LL, Lazo JS, Parker KL: *Goodman & Gilman's The Pharmacological Basis of*[[[herapeutics, 11th Edition[jhhttp]://www.lacdelssmedicine.com | 14 Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Bile Acid –Binding Resins

Idications:

- **VLower LDL as much as 25%, but will cause GI side effects.**
- **Relieve** pruritus in cholestasis.
- **✓ Digitalis toxicity, can bind digitoxin and enhance its excretion.**

Bile Acid —Binding Resins Toxicity:

Probably the safest drugs, since they are not absorbed from the intestine because of their large size. Maximal doses are effective but cause side effects.

- Gritty sensation is unpleasant but can be tolerated.
- Constipation and bloating.
- **Heartburn.**
- **✓ Malabsorption of Vitamin K.**
- **∀** Gall stones.
- **✓ Impaired absorption of many drugs(digitalis, propranolol, thiazides, warfarin, folic acid, statins, aspirin...etc)..**

Competitive Inhibitors of HMG-CoA Reductase "Statins"

- **∀** Mevastatin
- **∀** Simvastatin
- **✓** Lovastatin
- **∀** Pravastatin
- **∀** Fluvastatin
- **∀** Atorvastatin.
- **Rosuvastatin.**

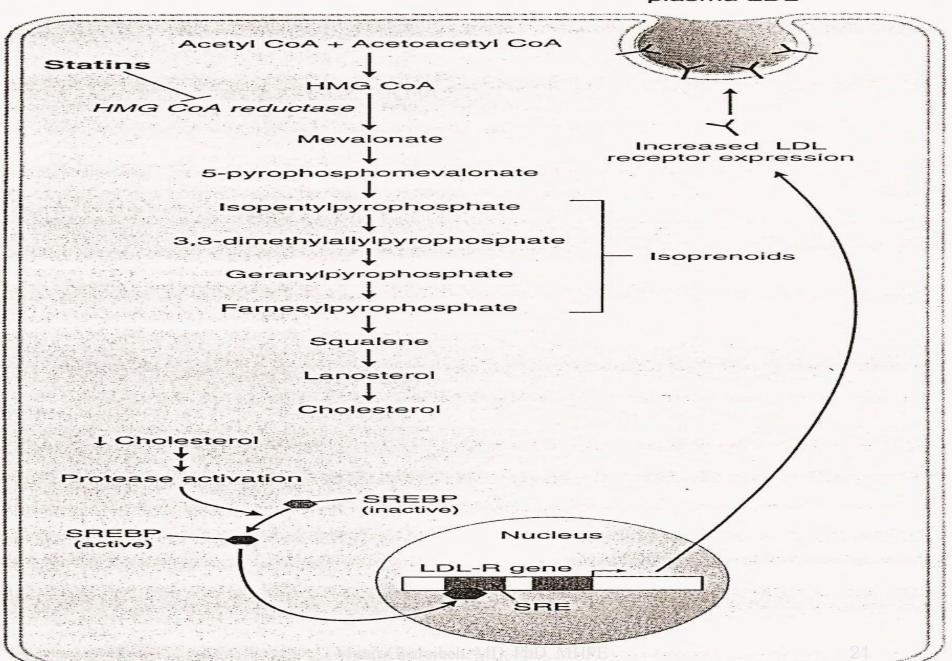
Competitive Inhibitors of HMG-CoA Reductase "Statins"

- **✓ Most commonly prescribed drugs** worldwide.
- **✓ Isolated from a mold** *Penicilliun citrinum*, 1976.
- **✓ Modified derivatives and distinct** synthetic compounds.
- **✓ Most effective in lowering LDL.**

Statins

- Competitively inhibit the early rate-limiting enzyme in *de novo* synthesis of cholesterol (3-hydroxy-3methylglutaryl coenzyme A reductase). This results in increased expression of the LDL receptor gene.
- ▼Reduced free cholesterol in hepatocytes activates a protease which will cleave membrane- bound SREBPs which will be translocated to the nucleus to enhance trasncription of LDL receptors. Increased number of LDL receptors will increase removal of LDL-C from the blood thus lowering of LDL-C.

Statins


Higher doses can reduce triglyceride levels caused by elevated VLDL levels.

✓Some (simvastatin and rosuvastatin) can raise HDL-C levels.

✓ Decrease oxidative stress and vascular inflammation by enhancing NO production.

Reduce platelet aggregation.

Increased LDL-R expression and uptake of plasma LDL

Statins

Toxicity:

- Toxicity is dose-related, associated with advanced age, hepatic or renal dysfunction, small body size, associated diseases, hypothyroidism and concomitant drugs.
- **▼ Elevation of transaminases, intermittent and not associated with strong evidence of liver failure.**

- **▼Elevation of creatine kinase (CK) activity.**
- **∀Rhabdomyolysis, causing myoglobinuria and renal injury and failure or even death. It is extremely rare (less than one in 10,000 people).**
- V Lupus-like disorder and peripheral neuropathy.

Pharmacogenetics of Statins

- ✓ Statins are good example of the principles of pharmacogenetics. This is because they are metabolized by the CYP enzyme system, which is a subject to individual genetic differences. These differences will be exhibited for their:
- ▼ The rapeutic Response
- ✓ Side Effects.

Inhibitors of Sterol Absorption

- **Ezetimibe:**
- **∀** Can reduce LDL.
- **✓** Inhibitor of a specific transport process in jejunal enterocytes, which takes up cholesterol from the lumen (NPC1L1).
- **∀** Can reduce cholesterol absorption by 54%, precipitating a compensatory increase in cholesterol synthesis.
- **✓** Action is complementary to statins(60% reduction in LDL-C).
- **∀** Can cause allergic reactions, reversible impairment of liver function tests and myopathy.

 24

Inhibitors of Cholesteryl Ester Transfer Protein

- **▼Torcetrapib.**
- **∀JTT-705.**

- **▼CETP** is a plasma glycoprotein synthesized by the liver that mediates the transfer of cholesteryl esters from the larger subfractions of HDL to triglyceride-rich lipoproteins and LDL in exchange for a molecule of triglyceride.
- **∀Can increase HDL levels by 45-106% in humans.**