Amino Acids and Peptides

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Protein structure and function

- Greek: proteios, primary (importance)
- 50 % of body's dry weight is protein
- Wide range of different functions
- Polymers of amino acids

ТҮРЕ	FUNCTION	EXAMPLE
Enzymes	Catalysts	<i>Amylase</i> —begins digestion of carbohydrates by hydrolysis
Hormones	Regulate body functions by carrying messages to receptors	Insulin—facilitates use of glucose for energy generation
Storage proteins	Make essential substances available when needed	<i>Myoglobin</i> —stores oxygen in muscles
Transport proteins	Carry substances through body fluids	Serum albumin—carries fatty acids in blood
Structural proteins	Provide mechanical shape and support	<i>Collagen</i> —provides structure to tendons and cartilage
Protective proteins	Defend the body against foreign matter	<i>Immunoglobulin</i> —aids in destruction of invading bacteria
Contractile proteins	Do mechanical work	Myosin and actin—govern muscle movement

Structure of the amino acids

The alpha carbon is the

groups attach.

H₂N-

central carbon in an amino acid to which the amine, carboxyl and side chain R

Side chain R group,

different for each amino acid

- General structure(amino, carboxylic, H, R)
- The basis of their classification
- Two vs. 3-dimentional (handedness, chirality, chiral vs. achiral, left vs. right, L vs. D)

Isomers, stereoisomers, enantiomers

- If two molecules have the same number of atoms, they are isomers
- If the isomers have the same atomic connectivity, but differ spatially, they are stereoisomers
- If the stereoisomers are mirror images of each other, they are enantiomers

What should not be forgotten?

- There are a lot of amino acids in life
- There are 20 encoded by the genetic code
- Naturally occurring amino acids in proteins are all "L"
- Chirality makes a difference
- What follows.....

Clockwise vs. counter-clockwise "CO – R – N"

Aspartame (methyl ester of aspartylphenylalanine)

Names and codes

\frown		\frown			
Amino Acid	3, letter code	1-letter code	Amino Acid	3-letter code	1-letter code
Alanine	Ala	А	Leucine	Leu	L
Arginine	Arg	R	Lysine	Lys	К
Asparagine	Asn	Ν	Methionine	Met	М
Aspartic acid	Asp	D	Phenylalanine	Phe	F
Cysteine	Cys	С	Proline	Pro	Р
Glutamic acid	Glu	Е	Serine	Ser	S
Glutamine	Gln	Q	Threonine	Thr	Т
Glycine	Gly	G	Tryptophan	Trp	W
Histidine	His	Н	Tyrosine	Tyr	Y
Isoleucine	lle	I	Valine	Val	V

Classification

Non-polar	Polar	Charged (positive)	Charged (negative)
Alanine	Serine	Lysine	Glutamate
Valine	Threoeine	Arginine	Aspartate
Leucine	Glutamine	Histidine	
Isoleucine	Asparagine		
Mehionine	Cysteine		
Tryptophan	Tyrosine		
Phenylalanine			
Proline			
Glycine			

Charged

Polar, Uncharged

Non-polar, Uncharged

Amino acids – general structure

- The amino acids obtained by hydrolysis of proteins differ in respect to R (the side chain)
- The properties of the amino acid vary as the structure of R varies

- Glycine is the simplest amino acid. It is the only one that is achiral
- In all of the other amino acids the α-carbon is a stereogenic center

Alanine

Alanine (Ala or A)

Methionine

Methionine

(Met or M)

Proline (imino)

Proline

(Pro or P)

Phenylalanine (aromatic)

Benzene

 C_6H_6

(Phe or F)

Tryptophan (aromatic)

Tryptophan

(Trp or W)

Glutamine

(GIn or Q)

Threonine

Valine (Val. V)

How close?

Threonine

(Thr or T)

Aspartic Acid

Aspartic Acid

(Asp or D)

Glutamic Acid

Glutamic Acid

(Glu or E)

Tyrosine (aromatic)

(Cys or C)

Lysine

(Lys or K)

Histidine (imidazole ring)

(His or H)

Amino Acids & life

Modified Amino Acids

Lysine & Proline

 Both are hydroxylated & are part of collagen structure

Lysine

Hydroxylysine

Glutamate (Glu) & γ- carboxyglutamate (Gla)

- The glutamate residues of some clotting factors are carboxylated to form γcarboxyglutamate (Gla) residues
 - Vitamin K is essential for the process
- This carboxylation is essential for the function of the clotting factors

Unnumbered figure pg 214 Principles of Biochemistry, 4/e © 2006 Pearson Prentice Hall, Inc.

Glutamate & GABA

- Is a precursor of γ aminobutyric acid (GABA)
 - Inhibitory neurotransmitter (CNS)

Glutamate & MSG in food

- Monosodium glutamate, or MSG, is a derivative of glutamic acid used as a flavor enhancer
- MSG may cause Chinese restaurant syndrome (chills, headaches, & dizziness)

Histidine & Histamine

- Regulates physiological function in the gut
- Acts as a neurotransmitter
- Causes allergic symptoms (a major causes for asthma)
- Contributes to inflammatory response
- Causes constriction of smooth muscle

Histamine

Tryptophan & Serotonin

- Converted to 5-hydroxytryptamine (serotonin, sedative effect)
- Very low levels are associated with depression, while extremely high levels result in manic state
- Tryptophan, milk & sleep

Tryptophan & Melatonin

- Melatonin is a hormone secreted by the pineal gland in the brain
- It helps regulate other hormones & maintains the body's circadian rhythm (daynight cycle)

Tyrosine & Catecholamine's

- Converted into catecholamine neurotransmitters
 - L-DOPA
 - Dopamine
 - Norepinephrine
 - Epinephrine
 - flight or fight

Tyrosine & MAOs

- The active products are monoamine derivatives (MA). MAOs
- A Beautiful Mind, focused on Dopamine
- MAO_i makes metabolism slow

Tyrosine & Tyramine

- Tyrosine supplements & morning lift
- Cheese & red wines (tyramine; mimics epinephrine); a cheese omelet is a favorite way to start the day

Tyrosine, Thyroxine & Melanin

COOH,

HO

HO

Indole-5,6-quinone

HC

н

DHICA

NH₂

Tyrosine

- Thyroxine (hormone)
- Melanin (skin color)

HO

HO

<mark>и</mark>соон

ΝH,

соон

EUMELANINS

PHEOMELANINS

HO

HO

(HOOC)

HO

(brown/black melanin) - effective UV blocking pigment

(red/blond melanin) -UV-permeable -Promotes free radical formation?

Ionization of amino acids

Why do amino acids get ionized?

Why do amino acids get ionized?

- At physiological pH, amino acids (without ionizable groups) are electrically neutral
- Zwitterion: a molecule with a net charge of zero (Isoelectric point; pl)

Effect of pH

Isoelectric zwitterion

Henderson-Hasselbalch Equation

- We have calculated the ratio of acid to conjugate base for an α -carboxyl group and an α -amino group at pH 7.0
- We can do this for any weak acid and its conjugate base at any pH using the Henderson-Hasselbalch equation

$$pH = pK_a + \log \frac{[conjugate base]}{[weak acid]}$$

Example 1 (Alanine)

Ionization of side chains

- Nine of the 20 amino acids have ionizable side chains
- These amino acids are:
 - Tyrosine, Cysteine, Serine, Threonine
 - Arginine, Lysine, Histidine
 - Aspartate, Glutamate
- Each side chain has its own pK_a value for ionization

pl_s of amino acids

Amino Acid	Side Chain pK _a ³	pl
Arginine	12.5	10.8
Aspartic Acid	4.0	3.0
Cysteine	8.0	5.0
Glutamic Acid	4.1	3.2
Histidine	6.0	7.5
Lysine	11.0	10

Let's consider pKa of -NH₂ = 9 and pKa of –COOH = 2 for all amino acids

Titration of amino acids: what happens?

-1 net charge

Anionic form

Cationic form

Neutral Isoelectric zwitterion

$pI = (pKa_1 + pKa_2)/2$

General rules for amino acid ionization

- Alpha carboxylic acids ionize at acidic pH & have pKs < 6; So in titration, alpha carboxylic acids lose the proton first
- Alpha amino groups ionize at basic pH & have pKs > 8; So after acids lose their protons, amino groups lose their proton
- Most of the 20 amino acids are similar to Gly

General rules for amino acid ionization

- Aromatic amines "His" have a pK about pH 6
- On titration: alpha carboxylic acids lose their proton first, then side chain carboxylic acids, then aromatic amine side chains (His), then alpha amino groups, then side chain amino groups
- These rules apply to small peptides, and proteins also

Peptides

The peptide bond, peptides, & proteins

- Amide bond
- Condensation reaction
- Directionality

Definitions and concepts

- A residue: each amino acid in a (poly)peptide
- Dipeptide, tripeptide, tetrapeptide, etc.
- Oligopeptide (peptide): a short chain of 20-30 amino acids
- Polypeptide: a longer peptide with no particular structure
- Protein: a polypeptide chains with an organized 3D structures
- The average molecular weight of an amino acid residue is about 110 Da
 - The molecular weights of most proteins are between 5500 and 220,000 (*calculate how many amino acids*)
- We refer to the mass of a polypeptide in units of Daltons
 - A 10,000-MW protein has a mass of 10,000 Daltons (Da) or 10 kilodaltons (kDa)

Features of the peptide bond

- Resonance structure makes peptide bond
 - Zigzag structure
 - Planar
 - (Un)charged
 - Rigid (double bond)
 - Un-rotatable

Features of the peptide bond

- Hydrogen bonding (exception: proline)
- Cis vs. trans configurations
- Why is it all trans?

Except for proline

- In proline, both *cis* and *trans* conformations have about equivalent energies
- Proline is thus found in the cis configuration more frequently than other amino acid residues

- Carnosine (dipeptide), (β-alanyl-L-histidine)
- It is highly concentrated in muscle & brain tissues
 - Antioxidant; protection of cells from ROS (radical oxygen species)
 - Contraction of muscle

- Glutathione (tripeptide)
- (γ-glutamyl-Lcysteinylglycine)
- A scavenger for oxidizing agents

- Enkephalins (pentapeptides), naturally occurring analgesics
- Found in the brain

✓Tyr—Gly—Gly—Phe—Leu (Leucine enkephalin)

✓Tyr—Gly—Gly—Phe—Met (Methionine enkephalin)

- The aromatic side chains of tyrosine and phenylalanine play a role in their activities
- Similarities of three-dimensional structures to opiates (e.x, morphine)

Morphine

Enkephalins

- Some important peptides have cyclic structures. Two well-known hormone examples, oxytocin & vasopressin
- S-S linkages between Cys
- Amide group at the C-terminus
- Nine residues, but:
 - Oxytocin has lle & L
 - Vasopressin has Phe & Arg
- Oxytocin regulates contraction of uterine muscle (labor contraction)
- Vasopressin regulates contraction of smooth muscle, increases water retention, & increases blood pressure

Peptide Hormones-Small Molecules with Big Effects

Ray

- Gramicidin S & tyrocidine A
- Cyclic decapeptides, act as antibiotics (Bacillus brevis)
- Contain D- & L-amino acids
- Both contain ornithine (Orn), which does not occur in proteins

Aspartame, the Sweet Peptide

- L-aspartyl-L-phenylalanine, commercial importance
- The methyl ester derivative is called *aspartame*
- 200 times sweeter than sugar

Phenylketonuria

- Inborn errors of metabolism; errors in enzymes of amino acids metabolism
- May have disastrous consequences (mental retardation)
- Phenylketonuria (PKU) is a well-known example
- PKU can be easily detected and managed in newborns
- Aspartame carry a warning
- Alatame (Ala instead of Phe) is a substituent

